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Abstract—Testing and evaluation are critical to the develop-
ment and deployment of autonomous vehicles (AVs). Given the
rarity of safety-critical events such as crashes, millions of tests
are typically needed to accurately assess AV safety performance.
Although techniques like importance sampling can accelerate
this process, it usually still requires too many tests for field
testing. This severely hinders the testing and evaluation process,
especially for third-party testers and governmental bodies with
very limited testing budgets. The rapid development cycles of AV
technology further exacerbate this challenge. To fill this research
gap, this paper introduces the few-shot testing (FST) problem
and proposes a methodological framework to tackle it. As the
testing budget is very limited, usually smaller than 100, the FST
method transforms the testing scenario generation problem from
probabilistic sampling to deterministic optimization, reducing the
uncertainty of testing results. To optimize the selection of testing
scenarios, a cross-attention similarity mechanism is proposed to
extract the information of AV’s testing scenario space. This allows
iterative searches for scenarios with the smallest evaluation error,
ensuring precise testing within budget constraints. Experimental
results in cut-in scenarios demonstrate the effectiveness of the
FST method, significantly enhancing accuracy and enabling
efficient, precise AV testing.

Index Terms—Few-shot testing, autonomous vehicles, scenario
similarity, deep learning.

I. INTRODUCTION

TESTING and evaluation of autonomous vehicles(AVs)
has attracted great interest from researchers in recent

years [1], [2], [3], [4], [5]. The underlying significance of
testing and evaluation for AVs arises from the safety-critical
nature of open-road applications. However, the rarity of
safety-critical events (e.g. crashes) within seemingly endless
traffic scenarios in real world [6] substantially undermines
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the efficacy of testing the performance index of AVs [7].
Consequently, there is a compelling imperative to judiciously
generate testing scenarios to enhance the efficiency of AV
evaluation processes.

During the extensive discussions of AV testing with
advanced intelligent methods, approaches such as accelerated
testing [8] and corner-case evaluation [9] have been primar-
ily used to assess AV performance under sufficient testing
budgets. However, no widely accepted approach has been
established for routine evaluation across different AVs. We
suggest that this is primarily due to the extremely limited
testing budgets in many real-world applications, which render
existing methods ineffective. For example, third-party testing
organizations and governmental bodies cannot test a large set
of scenarios for all potential AV models, especially when
real AV testing is required. Besides, with the rapid iterative
development of autonomous driving techniques, conducting a
thorough evaluation of AV performance within the research
and development cycle also becomes increasingly infeasible.
In these realistic cases, a preliminary yet reliable testing and
evaluation result is urgently needed, and the result must be
generated within the confines of an extremely small budget for
testing. The testing procedure should also be quite concise and
deterministic, thus being able to expediently generalize among
numerous possible AVs under test. Moreover, quantitative and
explainable testing results are needed to compare the perfor-
mance of different AVs, which creates additional difficulties.
In practice, corner cases are often generated by experts [10]
or replayed from logged data [11]. However, these heuristic
approaches lack a solid theoretical foundation, and unknown
unsafe scenarios can still be missed.

In this paper, we formulate this problem as the few-shot
testing (FST) problem and propose the FST method to tackle
this problem. To the best of our knowledge, this is the first
time the FST problem is developed and attacked.

Current testing methods have failed to address the FST prob-
lem because they cannot accurately quantify the performance
index of AVs or control the substantial uncertainty and vari-
ance within an acceptably small range when the testing budget
is extremely limited (e.g., fewer than 102 scenarios). In light of
these failures, we applied statistical models to quantify the AV
performance index. Furthermore, to eliminate the uncertainty
caused by the statistical sampling method, we transform the
testing problem from a probabilistic sampling problem to
a deterministic optimization problem, as shown in Fig. 1.
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Fig. 1. The comparison of the basic idea between statistical sampling methods
and the FST method.

We prove the optimality and feasibility of this deterministic
optimization and use it to identify an FST scenario set with
strong generalization ability. This improves the applicability
of the FST method for testing different AVs in real-world
scenarios. To leverage the available testing budget, the FST
scenario set is searched from a global perspective rather than
sampled sequentially. Finally, using the fixed scenario set,
we assess the precision of FST method based on the fixed
evaluation error. With some information on AVs, a minimum
upper bound of the evaluation error can be derived to ensure
the reliability of FST scenarios.

Specifically, we employ surrogate models (SMs, as in
[12], [13]) to represent possible AVs under test. To extract
information from the scenario space of AVs, we propose a
cross-attention similarity network to learn the relationships
between selected FST scenarios and other scenarios. The
similarity network quantifies the global information gain of
testing scenarios and facilitates the fusion of AV testing
results to obtain the final evaluation result. After training
the similarity network, we use gradient descent optimizer
to conduct a global, iterative search for a FST scenario set
with optimal generalization ability and a minimized upper
bound of evaluation errors. Ultimately, our method enables the
generation of an optimized scenario utilization strategy with
optimized FST scenarios.

We designed experiments on the cut-in case (commonly
used in previous studies [13], [14], [15] on AV testing) to test
and evaluate the performance index of AVs with an extremely
small number of scenarios (n = 5, 10, 20). To the best of
our knowledge, such a small number of testing scenarios has
not been employed in previous studies. Experimental results
show that the proposed FST method significantly outperforms
existing approaches in terms of accuracy. Even under a strictly
limited testing budget, the relative error of the FST method
remains within an acceptably small range, offering a novel
opportunity for rapid and reliable AV testing.

The contribution of this paper can be summarized as
follows:

(1) We formulate the FST problem and comprehensively
analyze its features and underlying challenges compared to
traditional testing and evaluation problems.

(2) We propose a general FST framework and theoretically
analyze its optimality, feasibility and sensitivity. The perfor-
mance index of the AV can be evaluated with an upper bound
of estimation errors.

(3) We devise a deep learning framework as an imple-
mentation of the FST method. It is capable of learning to
extract the scenario similarity while keeping the theoretical
benefits.

(4) We conduct systematic experiments to verify the effec-
tiveness of the FST method in terms of accuracy, stability,
sensitivity, and convergence, and the results demonstrate a
significant improvement compared to prevailing AV testing
methods.

II. RELATED WORKS

Many efforts have been made to search for a smaller testing
scenario set or accelerate testing process from different per-
spectives. Although these methods cannot be applied directly
to FST cases, we would still provide a review of these methods
and analyze their limitations.

Using critical or risky scenarios to test AVs is intuitively
easier to discover defects and reduce testing costs. As a prac-
tical method, some autonomous driving companies maintain
a scenario set from logged data and expert knowledge to
verify the reliability of their AVs before on-road deployment
[11]. Searching for critical scenarios or corner cases is also a
commonly used scheme to generate a smaller testing scenario
set [16]. Based on knowledge [10], scenario clustering [17],
[18], scenario coverage [19], optimization strategy [20], [21]
or other carefully designed models [15], [22], [23], [24], many
methods are capable of generating a representative scenario
set with certain risks. Deep learning [25] and reinforcement
learning [26] methods are also effective tools for scenario
generation. Given a small testing budget, these methods will
be able to generate specific testing scenarios. However, the
efficiency of these scenarios is usually measured using risk,
realism, or other specially designed metrics. In addition to
being unable to quantify the performance index of AVs, the
frequent occurrence of unknown risky scenarios also chal-
lenges the effectiveness of these methods in providing reliable
AV evaluations.

Statistical sampling methods represent an effective approach
to quantifying the performance index of AV model while
generating critical scenarios to accelerate the testing process
[8], [13], [14], [27], [28], [29]. Based on naturalistic driving
data (NDD), the naturalistic driving environment (NDE) can
be constructed and is widely used in these statistical testing
methods. Furthermore, the performance of AVs can be esti-
mated with a critical distribution using importance sampling
(IS). These methods can generate unbiased quantitative results
with higher efficiency. However, the critical scenarios may
be similar or repetitive, potentially resulting in redundant AV
information. As illustrated in Fig. 1, the testing variance in an
extremely small test set becomes extremely large. Since only
a single set of samples can be tested, it is almost impossible
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TABLE I
SUMMARY OF NOTATION

to determine whether the obtained results happen to provide
an accurate estimation of the AV performance.

The above methods generate critical or risky scenarios based
on offline strategies. By leveraging bayesian optimization or
regression methods, it is also possible to adaptively testing the
performance index of AV, thus utilize potential information of
AVs [12], [30], [31], [32]. However, in FST cases where the
testing budget is extremely small, the extra information from
the AV is insufficient to improve testing and evaluation effi-
ciency and accuracy. Meanwhile, since these methods generate
scenarios incrementally, some global information about the AV
may be overlooked, making it difficult to ensure accuracy with
such a small number of scenarios.

In [33], we proposed a coverage-based FST method (FST-
C). With the handcrafted coverage model, testing precision
could be significantly improved compared with previous meth-
ods. However, its effectiveness is highly dependent on the
design of the coverage model and the AV, which may limit
its applicability to different AVs or scenarios. In many specific
cases, the error of the handcrafted method is not small enough
to yield useful and accurate testing and evaluation results.
The goal of developing a general few-shot testing method
applicable to diverse AVs and scenarios has yet to be achieved.

III. PROBLEM FORMULATION

In this section, we provide the formulation of the general
FST problem. The notation used in our paper are listed in
Table I.

A. Performance Index Testing

To quantify the performance index (e.g. crash rate) of AV
under test, we use the NDE to model the driving environment
of AVs, which is a general formulation and is applied in many
existing studies [8], [27], [28]. In the NDE, the testing state
space X is restricted by the operational design domain. The
exposure frequency and the testing performance of AV on
certain scenario x ∈ X is defined as p(x) and P(A|x). We
consider P(A|x) as the probability of the event of interest
A (e.g. crashes) on scenario x. Then P(A), which means

the overall performance index of AV and is also the overall
probability of event A, is defined as follows:

P(A) =
X
x∈X

P(A|x)p(x). (1)

From the perspective of the random variable X taking
concrete values x ∈ X with the probability distribution p(x),
Eq. (1) can also be written as

µ = Ep[P(A|X)], (2)

where µ = P(A) is the mathematical expectation of P(A|X)
and serves as the ground truth of the performance index of
AV under test.

For traditional methods that test AV directly in the NDE,
testing scenarios are generated with Crude Monte Carlo
(CMC) [34]. The CMC method samples a testing scenario set
Xn,CMC , {x1,CMC, . . . , xn,CMC} from the original distribution
p(x), and the expectation of P(A|X) is estimated by

µ̃CMC =
1
n

nX
i=1

P(A|xi,CMC), Xi,CMC ∼ p(X). (3)

As n→ ∞, it can be proved that µ̃CMC converges to µ with the
probability of 1. Therefore CMC is unbiased and can provide a
reliable estimation of AV performance index with a sufficiently
large number of tests. According to reports [35], millions or
even billions of miles of test are required to demonstrate the
reliability of AVs in fatal crashes and this is almost impossible
in real world application. As a contrast, when the number
of scenarios n is limited within a very small range (such as
n ≤ 102), the estimation variance of CMC becomes almost
impossible to control.

B. Target of Few-Shot Testing

The fundamental testing objective of the FST problem is the
testing accuracy on AVs under a strictly limited number of sce-
narios n. In this study, we tackle the testing problem with the
idea of optimizing instead of sampling from distributions. Due
to the substantial uncertainty when n is small, sampling meth-
ods typically result in a large variance. In contrast, we search
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for a fixed testing scenario set Xn,FST = {x1,FST, . . . , xn,FST}

given a specific n, and we use Xn and xi for short in the
remainder of this paper. We try to minimize the evaluation
error compared to the ground truth of AV performance:

min
Xn

E = |µ̃FST − µ| . (4)

In Eq. (4), µ̃FST is a fixed value after the testing set Xn is
determined. The evaluation error will then be a certain value
with no variance. With this scheme, we transform the problem
of minimizing variance using unbiased sampling method into
minimizing fixed errors with a set of fixed testing scenarios.
Compared to statistical sampling methods, the advantages of
this transformation when n is extremely small mainly lie in:

(1) with a fixed and optimized FST set, the uncertainty
is eliminated, which ensures the accuracy and reliability of
the FST method in cases where the testing budget is strictly
limited;

(2) all scenarios are selected collectively using a high-level
strategy, rather than being generated sequentially or indepen-
dently from distributions, thereby maximizing the utility of
each testing scenario from a global perspective.

C. General Few-Shot Testing Problem

Generally, the estimation result of the FST method is a
function of the testing scenarios and we can rewrite Eq. (4)
with

µ̃FST = f [P(A|x1), . . . , P(A|xn)] (5)

to get the expanded form of FST target

min
Xn

E = | f [P(A|x1), . . . , P(A|xn)] − µ| . (6)

In Eq. (6), however, it is impossible to get all information
on AV (namely P(A|xi) and µ) before testing to solve this
optimization problem. In practical terms, only part of the
prior knowledge about the AV is known. Moreover, since
the FST set is fixed after optimization and the AV under
test is unknown, FST method must have strong generalization
ability across potential AVs. Consequently, we suppose that the
possible AVs forms a vehicle model set M. For all possible
models m ∈ M, the performance index of AV in scenario x
can be tested as Pm(A|x). The SM set M not only provide
information of the AVs, but also captures the uncertainty of
them. Moreover, the SM set could be continuously updated
to better cover the diversity of the real-world AV behaviors.
As FST method is devised to generate accurate results with
minimized errors, we can further formulate Eq. (6) as

min
Xn

max
m∈M

E = | f [Pm(A|x1), . . . , Pm(A|xn)] − µm| , (7)

where µm = Ep[Pm(A|X)] is the ground truth of performance
index of specific model m and E is the testing and evaluation
error.

We can see from Eq. (7) that n scenarios are carefully
selected to extract the performance of all possible AVs under
test. Supposing the real AV under test m∗ satisfies m∗ ∈M, the
accuracy and reliability of FST results are ensured by an upper
bound of error, thus addressing the substantial uncertainty and
unacceptable confidence levels arise from an extremely small

n. The accuracy of prior information may vary across different
testing problems, while this formulation can always optimize
the performance by leveraging the available data to its fullest
extent.

Apart from these advantages, the challenges to solving this
problem can be summarized as follows:

(1) the form of the estimation function f is highly flexible
and the method to generate µ̃FST using testing performances
P(A|xi), i = 1, . . . , n remains undetermined;

(2) supposing a concrete f is decided, a set of scenarios
Xn should be carefully selected to obtain a minimized upper
bound of the evaluation error;

(3) if M contains additional errors and m∗ ∈ M, the
effectiveness of the testing and evaluation results may be
impaired.

Our solutions to these challenges will be discussed in the
next section.

IV. FEW-SHOT TESTING METHOD

A. Vehicle Model Set Construction

As a representation of the prior knowledge of possible AVs,
we use surrogate models (SMs) to construct M in Eq. (7) in
this paper. In previous works [12], [13], SM has commonly
been used as an effective way to draw a sketch on AV models
for further testing and evaluation. For the FST problem, we
focus on the generalization ability of the FST method on
various potential AVs to get minimized errors, so we use
multiple SMs m1, . . . ,ms to form a surrogate model set, which
is M. For simplicity, we assume that

M ,

(
m|m =

sX
i=1

cimi, ci > 0,
sX

i=1

ci = 1

)
, (8)

which means the AV model m∗ can be approximated as a linear
combination of s possible SMs (the combination is based
on the performance level, i.e. Pm(A|x)). These SMs could
consist of vehicle models from aggressive driving policies
to conservative driving policies and can depict the possible
strategies of AVs. Eq. (8) is not the only possible description
of M. For instance, SMs with different noise magnitudes in the
scenario space can also form a set M. The noise magnitudes
indicate the confidence we have in the prior knowledge of
AVs, which could be explored in future work.

With this simple form of the SM set, the optimization
problem in Eq. (7) will be easier to solve and we have the
following theorem:

Theorem 1: The following 2 descriptions of minimax prob-
lem are equivalent under Eq. (8):

min
Xn

max
m∈M

| f [Pm(A|x1), . . . , Pm(A|xn)] − µm| , (9a)

min
Xn

max
i=1,...,s

ˇ̌
f
�
Pmi (A|x1), . . . , Pmi (A|xn)

�
− µmi

ˇ̌
. (9b)

Proof: For fixed Xn, we focus on the maximization problem.
Assume that the optimal solution to the maximization problem
in Eq. (9a) is c∗ = (c∗1, . . . , c

∗
s) with the optimal value E∗ and

there exists j , k such that 0 < c∗j , c
∗
k < 1. For another two

solutions c′ and c′′, taking

c′i = c′′i = c∗i ,∀i , j, k,
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c′j = c′′k = c∗j + c∗k,

c′k = c′′j = 0,

and denoting E′, E′′ as the objective function value respec-
tively, we have

E∗ =
c∗j

c∗j + c∗k
E′ +

c∗k
c∗j + c∗k

E′′ ≤ max{E′, E′′}.

Thus c∗ is not the optimal solution and c∗j or c∗k can be
converted to 0 to reach c′ or c′′. Repeat this operation and
the optimal value can be taken only at c∗ where c∗i = 1, c∗j =

0,∀ j , i, which is the form in Eq. (9b).
Consequently, with this construction of the SM set, the

complex optimization problem in Eq. (7) is simplified. This
will be beneficial when we solve this optimization problem in
experiments.

B. Testing Results Fusion

In this section, we try to solve the problem of fusing the
testing results on AV, namely P(A|xi), . . . , P(A|xn), to evaluate
µ̃FST (see Eq. (5)). Classic testing method CMC provides us
with a direct way in Eq. (3), where all scenarios sampled from
the distribution p(x) are assigned the same weight 1/n. In this
paper, we extend this form to a more general weighted sum
to evaluate the contribution of each FST scenario (the testing
results) to the overall evaluation result

µ̃FST = f [P(A|xi), . . . , P(A|xn)]

=

nX
i=1

P(A|xi)w(xi;Xn), (10)

where w(xi;Xn) is the weight assigned to each testing result
and is related to all testing scenarios in Xn. To obtain a
normalized evaluation result µ̃FST, we assume that

nX
i=1

w(xi;Xn) = 1. (11)

Comparing to statistical methods like CMC and IS [8], [14],
[29], which suffer from high uncertainty and large variance
when the number of scenarios n is small, our testing results
fusion strategy adapts better to FST problems. As w is a
flexible value in the range [0, 1], the weight of each scenario
to the evaluation result is adjusted based on the information
it provides, thus ameliorating the problem of information
redundancy or insufficiency in statistical testing methods.
Additionally, w is a function of the entire testing set Xn.
The weight of each scenario is determined jointly rather
than independently, which maximizes the utility of the small
number of testing scenarios.

In the formulation of the FST problem, we aimed to find
the set of optimized scenarios with the fixed and smallest
error. Consequently, the optimality of the testing result fusion
strategy is important for the FST method. For the FST method
defined with Eq. (10-11), we can prove in the following
theorem that for any AV model m, there exists a weight
function w and an FST set Xn such that the evaluation error
on m is 0.

Theorem 2: Let µ be the performance index of model m and
Xn be the FST scenario set of n. µ̃FST is given by Eq. (10).
Then there exists a weight function w(xi;Xn) satisfying
Eq. (11) so that

µ̃FST = µ. (12)

Proof: Given fixed xi and P(A|xi), we can write µ̃FST as

µ̃FST =

nX
i=1

P(A|xi)w(xi;Xn),

= g(w1, . . . ,wn),

where wi = w(xi;Xn) for short. According to the definition of
µ we have mini=1,...,n P(A|xi) ≤ µ ≤ maxi=1,...,n P(A|xi). Then
define j = argmin j P(A|x j) and k = argmaxk P(A|xk). Given
w j = 1 and wi = 0,∀i , j, we have

µ̃FST = g(w1, . . . ,wn) = P(A|x j) ≤ µ

and given wk = 1 and wi = 0,∀i , k, we have

µ̃FST = g(w1, . . . ,wn) = P(A|xk) ≥ µ.

With the arbitrariness of w1, . . . ,wn we have the continuity
of g(w1, . . . ,wn) and Eq. (12) can be acquired.

With Theorem 2, we prove the optimality and feasibility
of the FST method. Then it is significant to find a weight
function to achieve Eq. (12). Following the insight of extract-
ing representative information from the FST scenario set, we
propose the similarity measure as an effective representation
of the information contained in scenarios, denoted as

w(xi;Xn) =
X
x∈X

S (xi, x;Xn)p(x), (13)

where S (xi, x;Xn) is the similarity between a FST scenario
xi and another scenario x in the entire state space. To fully
leverage the global information from an extremely small set
of scenarios, the similarity S (·) between any two scenarios xi

and x is influenced by the entire FST set Xn, which enables
a potentially higher evaluation accuracy.

In Eq. (13) the weight of the FST scenario xi ∈ Xn is
interpreted as the sum of its similarity to scenarios in the
state space, weighted by the exposure frequency of the other
scenario. If the similarity measure satisfies

nX
i=1

S (xi, x;Xn) = 1,∀x ∈ X , (14)

combining with the fact
P

x∈X p(x) = 1 and substituting
Eq. (14) into Eq. (13), we can know that it satisfies our
normalization condition in Eq. (11).

Intuitively, it is reasonable to decide the contribution of each
FST scenario according to the number of other scenarios that
are similar to it. The concept of similarity is also utilized in
various methods of AV testing [36] or scenario clustering [6].
Typically, similarity is represented by a pre-defined, hand-
crafted model (e.g. distance in the state space) and remains
fixed in the testing process. As similarity is a reflection or
hypothesis on the features of the state space, its effectiveness
is closely tied to the specific AV under test. As a result, the
reliability of the handcrafted model is in question.
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Fig. 2. The structure of cross-attention similarity network and FST framework.

C. Scenario Similarity Learning

Based on the testing result fusion strategies from Eq. (10)
to (14), we propose a general learnable similarity measure.
Our purpose is to design a similarity function S (xi, x;Xn)
satisfying Eq. (14) so that the upper bound of the testing and
evaluation error E in Eq. (7) is minimized. To leverage the
potential data provided by SMs, we propose a cross-attention
similarity network in a self-supervised learning manner. The
architecture of the framework is illustrated in Fig. 2.

Instead of directly applying the similarity model to different
scenarios, we use the MLP to extract latent features of all
possible scenarios based on the surrogate model set M. The
core of the similarity network is to generate a similarity
measure between a scenario xi ∈ Xn in the FST scenario set
and a scenario x ∈ X in the scenario space. This similarity
value is supposed to be adjusted based on Xn to utilize global
information effectively. Therefore, treating each scenario as a
token, we propose a cross-attention structure between the FST
scenarios xi and general scenarios x. All encoded samples in
the FST scenarios set xi are used as queries to calculate atten-
tion to other encoded scenarios x, which serve as keys. In order
to dynamically adjust the attention mechanism according to the
FST scenarios in Xn, we apply the query-level normalization,
which normalizes the weights of values assigned to queries
along the dimension of queries. This normalization strategy
extracts the relative information of the FST scenario set Xn.
The similarity matrix is generated as

Sn∗N = Normq {d(Q, K)} , (15)

where Qn×d and KN×d is the encoded feature matrix from
Xn and X . N is the number of scenarios in state space.
d(Q, K) is a feature-wise similarity calculation strategy (e.g.
QKT for classic attention). Here we compute the reciprocal
of the L2 distance between each column in Q and K to get
d(Q, K)n×N . Softmax is used as the normalization function
along the query dimension. The element si j in Sn∗N means the
similarity between the i-th FST sample and the j-th scenario
in scenario space, i.e. S (xi, x( j);Xn). To improve efficiency,
N′ < N scenarios in state space X can also be used as

References to compute similarity Sn∗N′ . Finally, according to
Eq. (13), we merge p(x) to get matrix VN×1 and use the
attention output of FST scenario tokens as the weight function

Wn×1 = Sn×NVN×1, (16)

where W can be expanded as [w(xi;Xn), . . . ,w(xn;Xn)]T . With
the cross-attention mechanism, the weight w and estimation
result µ̃FS T can be calculated to train the similarity network.
Note that with continuous similarity network parameters θ
and the query-level normalization, Eq. (14) is satisfied, so the
optimal testing and evaluation error is 0 for all m ∈M with
optimal θ, according to Theorem 2.

After obtaining weight matrix in Eq. (16) we can calculate
the FST result according to Eq. (10) and subsequently calcu-
late the upper bound of the evaluation error in Eq. (7). We
directly use the upper bound of the error as the loss function.
Since the testing result fusion function f is derived from the
similarity network, we denote it as fθ and have

L(θ,Xn) = max
m∈M

| fθ [Pm(A|x1), . . . , Pm(A|xn)] − µm| . (17)

Generally, the similarity network is trained by randomly sam-
pled Xn to get minimized expectation of loss EXn [L(θ,Xn)].
However, if we consider the optimization of Xn in Eq. (7), the
optimization target will be

min
θ,Xn

L(θ,Xn), (18)

which means we should optimize θ and Xn simultaneously.
Eq. (18) can be interpreted as prioritizing the loss value at the
optimal point X ∗n rather than closely monitoring the average
loss value on other FST scenarios.

Because X ∗n is completely unknown before training, and
the optimization of Xn is coupled with the optimization of
θ, Eq. (18) becomes intractable. We simplify and decouple
this problem into a two-stage process: training the similarity
network θ and optimizing the FST set Xn. In the training
process, since X ∗n is unknown, we use a compromised and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on October 29,2025 at 07:11:29 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: FEW-SHOT TESTING OF AUTONOMOUS VEHICLES WITH SCENARIO SIMILARITY LEARNING 7

practical form to approximate it. We sample Xn from some
critical distribution, written as

min
θ
EXn∼Pc [L(θ,Xn)], (19)

where Pc is a critical distribution and is supposed to be close to
the optimal solution X ∗n . To determine Pc, we apply k-means
clustering to the state space based on the performance of SMs.
We obtain k subsets of the entire scenario space X , denoted
as Xi, where Xi ⊆ X ,∀i, ∪n

i=1Xi = X , and Xi ∩X j = ∅,∀i , j.
Each scenario in the training FST scenario set Xn is uniformly
sampled from the subsets Xi in a circular manner, iterating
from 1 to k. This distribution extracts the information of SMs
in different areas of the state space and is possible to be an
effective approximation to optimal X ∗n .

After the training stage, L(θ,Xn) can be used again as
the upper bound of the testing and evaluation error in the
subsequent generation of the optimal FST scenario set Xn.

D. Testing Scenario Set Optimization

Our remaining step is to optimize for Xn to achieve the
minimum upper bound of error. We write this optimization
problem explicitly as

min
Xn

Lθ(Xn)

s.t. Lθ(Xn) = max
m∈M

|µ̃FST − µm|

= max
m∈M

ˇ̌̌̌
ˇ nX

i=1

Pm(A|xi)w(xi;Xn) − µm

ˇ̌̌̌
ˇ , (20)

and w is given by Eq. (13). We employ the classic gradient
descent method to solve this optimization problem (Fig. 2).
The initial Xn for optimization is sampled with the same
strategy Pc as introduced in Section IV-C.

Remarkably, although the similarity network was trained
with a specific n, it is capable of adapting to different n.
Theoretically, we can write the constraints in Eq. (20) asˇ̌̌̌

ˇ nX
i=1

Pm(A|xi)w(xi;Xn) − µm

ˇ̌̌̌
ˇ

=

ˇ̌̌̌
ˇ nX

i=1

"
Pm(A|xi)

X
x∈X

S θ(xi, x)p(x)

#
− µm

ˇ̌̌̌
ˇ

=

ˇ̌̌̌
ˇX

x∈X

("
nX

i=1

Pm(A|xi)S θ(xi, x)

#
− Pm(A|x)

)
p(x)

ˇ̌̌̌
ˇ

≤
X
x∈X

ˇ̌̌̌
ˇ
"

nX
i=1

Pm(A|xi)S θ(xi, x)

#
− Pm(A|x)

ˇ̌̌̌
ˇ p(x), (21)

where x is a scenario in the state space. Since p(x) > 0 is a
constant derived from the dataset, the learning objective is to
minimize

ˇ̌�Pn
i=1 Pm(A|xi)S θ(xi, x)

�
− Pm(A|x)

ˇ̌
for all x ∈ X .

If Pm(A|x) is close to Pm(A|xi), this objective would result in
a large S θ for different n.

Once the similarity network is trained, multiple FST sets
with different testing numbers n can be obtained by optimiza-
tion. After n is determined and the FST set is obtained, the FST
set can be applied to various AVs to generate accurate testing
and evaluation results, making the FST method an efficient
and effective testing method.

E. Additional Error Reduction

In this section we present an additional discussion on
condition that the real AV under test m∗ < M, which is
possible if M is still inaccurate. If we decompose m∗ into
m∗ = m + ∆m where m ∈M, we will have

E∗ =
ˇ̌
µ̃m,FST + µ̃∆m,FST − µm − µ∆m]

ˇ̌
≤ |µ̃m,FST − µm|+ |µ̃∆m,FST|+ |µ∆m|

≤ Emax + |µ̃∆m,FST|+ |µ∆m|, (22)

where E∗ is testing and evaluation error on m∗ and Emax is
the upper bound of error given by the FST method on M. In
Eq. (22) |µ∆m| is the ground truth performance index of the
error model ∆m and is a constant value. |µ̃∆m,FST| is the testing
and evaluation result of ∆m with the FST method and can be
minimized. We can expand it as

µ̃∆m,FST =

nX
i=1

(
P∆m(A|xi)

X
x∈X

S (xi, x;Xn)p(x)

)
, (23)

where P∆m(A|xi) is the unknown testing result on ∆m and
can be minimized. As ∆m is unknown, we use a fluctuation
estimator similar to [33] as an estimation of ∆m and P∆m(A|xi):

F(xi;Xn),
P

x∈X [Pm(A|x) − Pm(A|xi)]S (xi, x;Xn)p(x)P
x∈X S (xi, x;Xn)p(x)

.

(24)

Eq. (24) use the difference between a FST scenario xi and the
other scenarios in scenario space weighted by the similarity
and exposure frequency to estimate P∆m(A|xi). It is practically
reasonable if the performance on xi is significantly different
from x with large similarity to it, there may be a potentially
large error using the SMs on xi and P∆m(A|xi) may also be
large.

Replace P∆m(A|xi) with F(xi;Xn) in Eq. (23) and we will
get an approximation of µ̃∆m,FST, denoted as µ̂F,FST. Ignoring
the constant item and assigning a weight parameter to balance
the contributions of the original error and the additional
error, the optimization target in Eq. (22) is written as

min
Xn

L(Xn)

s.t. L(Xn) = max
m∈M

{|µ̃FST − µm|}+ wF |µ̂F,FST|. (25)

wF is the weight of the fluctuation estimator. If we have
confidence on the SM set M and have assumption m∗ ∈M,
wF is set to 0. The optimization is conducted in the same way
as described in Section IV-D.

V. EXPERIMENT

A. Cut-in Scenario

In this section we use the simulation experiment in cut-
in scenario to verify the proposed FST method. Cut-in (as
depicted in Fig. 3) is a simple and common scenario for
AV testing [13], [14], [15]. The background vehicle (BV)
changes lanes ahead of the AV in this scenario, causing risks
of collision. The state space of cut-in scenario is simplified as
a 2-dimensional variable

x = [R, Ṙ],R ∈ [0, 90]m, Ṙ ∈ [−20, 10]m/s, (26)
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Fig. 3. Cut-in scenario. s and v denote the longitudinal position and velocity.
R and Ṙ denote the range and range rate, respectively.

Fig. 4. Illustration of scenarios generated by baseline testing methods in the
cut-in state space.

where R and Ṙ denote the range and range rate at the moment
of lane-changing maneuver. By collecting driving behaviors of
human drivers in NDE, we can derive the exposure frequency
of scenarios as p(x). In this experiment we focus on the crash
rate and take crash event as A. Then if a collision occurs
between AV and BV, we have P(A|x) = 1, otherwise P(A|x) =

0. We initialize and run the cut-in scenario in simulation to
get the performance of AVs.

The BVs in our experiment are 4 intelligent driver models
(IDM) (denoted as m1, . . . ,m4) with different parameters. M
is constructed according to Eq. (8). We use another 3 IDMs
and a full velocity difference model (FVDM) [37] as AVs
to verify the FST method. The crash rates of these AVs are
2.97×10−3, 1.42×10−3, 6.64×10−4, 1.55×10−3, and the AVs
are denoted as AV-1 to AV-4, respectively. The crash boundary
of AV-1 and the exposure frequency of scenarios are shown
in Fig. 4. Scenarios with smaller R and Ṙ are of higher risks
and may cause crashes.

We use CMC, random quasi-Monte Carlo (RQMC) method
[38] and importance sampling (IS) method [13] as baselines.
The results of these methods with 100 samples are also shown
in Fig. 4. In this paper, we refer to CMC as NDE testing
and RQMC as uniform testing, respectively. Scenarios of
NDE gather in areas with high exposure frequency and the
crash scenarios are hardly concerned, resulting in the low
efficiency. IS samples critical scenarios with high risks, but

the critical scenarios are similar, which cannot make the most
of information with small testing budgets.

B. Qualitative Analysis

First we discuss the qualitative performance of FST method.
We set the FST budget n = 10 and trained the similarity
network with M. Because of the complexity of temporal
simulation, the performance of AV Pm∗ (A|x) was hard to be
directly represented as a linear combination of BVs and we
set the optimization parameter wF = 1.

The basic idea of the FST method is to extract the informa-
tion of state space provided by SMs leveraging the scenario
similarity. We use an example of similarity map to illustrate
the similarity learned in our experiment in Fig. 5. The crash
boundaries of 4 SMs are shown in the black curve. We
use colors to represent the normalized similarity between a
FST scenario xi and the scenario space, i.e. S (xi, x;Xn). We
inspect different scenarios in the FST scenario set and draw
9 similarity maps of 10 scenarios. FST scenarios within the
safe, high-frequency regions of the state space tend to receive
large weights w(x;Xn) because of high similarity values. In
contrast, scenarios with higher risks or notable performance
differences among SMs are assigned lower weights. Moreover,
subtle performance differences near the crash boundaries of
SMs are also captured by the similarity.

For further verification of the FST method, We applied the
same similarity network on testing tasks with n = 5, 10, 20
and searched for the optimal FST scenario set. Fig. 6 shows
the examples of the FST scenario set and the similarity of the
scenarios. In all three cases with different testing budgets, only
a small percentage of testing scenarios are in high-probability
safe scenarios, which means sufficient information in this area
is gained with a small number of scenarios. These scenarios
are needed since unknown unsafe scenarios may occur in this
region. As a contrast, most of the testing resources are corner
cases allocated to areas near the crash boundaries. In these
areas, the performance of the potential AV is supposed to
be more uncertain, thus requiring more tests to get accurate
results. We assign different colors to scenarios in the state
space based on their maximum similarity to the FST scenarios.
Remarkably, the dividing lines between FST scenarios are
close to the accident boundary of SMs, indicating that the
structure of SMs’ state space can be learned by our method.

C. Quantitative Testing and Evaluation Results

In order to quantify the efficiency of the FST method, we
use NDE testing, uniform testing, importance sampling and
the previous coverage-based FST (FST-C) [33] as baselines
to carry out tests on AVs. Since the testing and evaluation
result is deterministic with the same FST scenarios set, we
introduce randomness to our method by randomly initializing
the scenarios for optimization. We used these 5 methods to test
AV-1 ∼ 4 with n = 5, 10, 20, which are limited budgets, and
obtained the average error and variance. To verify accuracy in
terms of maximum error, we sorted the testing and evaluation
results to get the maximum error with a confidence level of
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Fig. 5. Examples of FST similarity maps with 10 scenarios. Each scenario has its own similarity map, and 9 of them are shown.

Fig. 6. Example of FST scenarios and the relative similarity. The color of a scenario in state space is determined by the FST scenario with the maximum
similarity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on October 29,2025 at 07:11:29 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II
STATISTICS OF TESTING AV-1 ∼ 4 WITH n = 5, 10, 20 SAMPLES (TESTING ERROR / RELATIVE ERROR)

Fig. 7. The comparison of distributions of the estimation errors on AV-1.

Fig. 8. The comparison of the error box plots on AV-1.

99% (α = 1%). The statistics with the relative error to the
ground truth of AVs are listed in TABLE II.

NDE testing faces the problem of “curse of rarity” and the
problem is even more serious in our experiment with small n.
To generate a valid result for these metrics, a large number of

tests must be taken, so we theoretically computed the metrics
for NDE testing. The metrics of the other methods are from
1000 repeated tests on AVs. From Table II we can see that the
result of NDE is useless with large errors or 100% relative
errors (meaning that the evaluation result is 0). Compared to
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Fig. 9. Illustration of upper bound of evaluation error.

NDE testing, other baseline methods achieve higher accuracy;
however, their maximum error remains unacceptably high. The
IS method is highly dependent on the specific AV model
and testing budget, demonstrating improved performance with
AV-1 or under larger testing budgets. The proposed FST
method significantly outperforms other approaches across
these metrics. Notably, when the number of tests is small,
the accuracy of the FST method (measured by both error
and maximum error) is less affected compared to tradi-
tional methods. Its relative error remains more acceptable,
suggesting realistic availability for rapid and accurate AV
testing.

The distributions of logarithmic error of the FST method
and baseline methods on AV-1 are also shown in Fig. 7. The
box plots of the same experiment setups are shown in Fig. 8.
Testing were repeated 1000 times with each method. The
stability of optimization can be verified in this experiment.
With NDE, most of the crash rates tested out of 1000 results
are 0, yielding an evaluation error of 2.97×10−3. Compared to
the other baseline methods, the error tested by FST is tightly
clustered. It also exhibits a sharp decline in error frequency as
the error magnitude increases, highlighting its effectiveness in
minimizing the upper bound of error.

D. Ideal Upper Bound of Evaluation Error

In Section IV, we prove that in ideal cases where m∗ ∈
M, a theoretical upper bound of evaluation error is ensured.
Here we set wF = 0 and search for a set of 10 optimal FST
scenarios. The optimized upper bound of error is 1.49× 10−4.
We manually sampled AVs from M to test. The crash rate of
AVs varies from 4.62 × 10−4 to 4.90 × 10−3. These AVs are
not real enough but represent the situations where the prior
knowledge is relatively accurate. We tested 1000 AVs and the
results of the testing and evaluation error are shown in Fig. 9.
It can be seen that the evaluation error of all AVs is restricted
within the upper bound, and the maximum relative error of
the AVs is 32.2%.

Fig. 10. Results with different number of scenarios.

E. Ablation Study

We explored the feature of our method in this section.
The following experiments were conducted with n = 10 and
repeated 103 times, unless otherwise specified.

Effectiveness of modules in FST: We examined the effect of
different modules of FST by testing AV-1 ∼ 4 with n = 10. We
gradually added the optimization module and the additional
error reduction module with fluctuation estimator to verify
the performance of FST method. The results are listed in
Table III. By combining similarity network and optimization
strategy, the performance of FST is significantly improved
compared with FST-C and randomly initialized FST scenarios.
The effects of fluctuation estimator depends on specific AVs.
Generally, the maximum evaluation error of FST method can
be improved with the additional error reduction scheme.

Testing with larger n: We examined the effect of the number
of scenarios n by testing AV-1 with up to 1000 scenarios.
Although our method is designed for applications with a
strictly limited testing budget, it can achieve higher accuracy
with a larger testing budget. The results are shown in Fig. 10.
FST method effectively controls the error with as few as 5
scenarios and converges to the ground truth as the number of
scenarios increases.

Influence of hyper-parameters: The key parameters of the
FST method include k clusters for generating Pc and the
weight parameter of fluctuation estimator, wF . For the number
of clusters, we conducted experiments with k = 1, 2, 5, 10, 20
and the results are shown in Table IV. When the number
of clusters is set to 1, Pc becomes a uniform distribution,
which deviates from X ∗ and degrades the performance of the
similarity network. As k increases, the testing and evaluation
error decreases, reaching its minimum at k = 5. Regarding the
weight parameter wF , we conducted experiments on the IDM
AV-1 and the FVDM AV-4 to assess the impact of the fluctu-
ation estimator across different AVs and the results are shown
in Fig. 11 and Fig. 12. Results indicate that the optimal choice
of wF depends on the accuracy of the SM set in representing
a specific AV model. For AV-4, the fluctuation estima-
tor reduces the average testing error as AV-4 is dissimilar
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TABLE III
ABLATION ON FST WITH n = 10 SAMPLES. WHEN OPTIMIZATION MODULE IS DISABLED WE RANDOMLY SAMPLE ALL FST SCENARIOS.

wF IS SET TO 1 IF USING THE FLUCTUATION ESTIMATOR MODULE AND OTHERWISE wF = 0. WE USE THE COVERAGE-BASED
METHOD IN [33] (I.E. FST-C) WHEN SIMILARITY NETWORK IS NOT USED

Fig. 11. Testing with different wF on IDM AV-1.

Fig. 12. Testing with different wF on FVDM AV-4.

TABLE IV

ABLATION ON THE K-MEANS CLUSTERS

to the SMs. In contrast, for AV-1, the impact is reversed.
Generally, the experiments demonstrate that the fluctuation

TABLE V

ABLATION ON THE STRUCTURE OF SIMILARITY NETWORK

TABLE VI

GENERALIZATION ABILITY OF SIMILARITY NETWORK ON TRAINING AND
TESTING DATASET WITH DIFFERENT n

estimator effectively reduces the maximum testing error across
different AVs. To balance the effect of the fluctuation estimator,
we set wF = 1 in our experiments.

Choices of MLP structure: We examined different structures
of MLP as the backbone and performed tests on AV-1. As
the results in Table V show, a simple structure will weaken
the ability of the network. For the cut-in experiment with
a simple MLP structure, the 8-layer MLP is sufficient to
effectively extract information from the state space. More
advanced network architectures will be explored in future
work.

F. Generalization Across Different Budgets

The similarity network is designed to learn the latent feature
of scenarios in the state space to determine the weights of FST
scenarios. This feature is not strictly related to the number
of tests n, as mentioned in Section IV-D. We trained the
similarity network using data consisting of n = 5, 10, 20
scenarios, respectively, and conducted cross-experiments on
AV-1 using n = 5, 10, 20. The results are shown in TABLE VI.
Generally, after training with a certain number of scenarios,
the FST method will be able to generate the FST scenario
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set under different budgets. With larger number of training
FST scenarios, the similarity network will achieve better
performances.

VI. CONCLUSION

In this paper, we propose the few-shot testing method to
tackle the challenge of testing the performance index of AVs
with a severely limited testing budget. Existing testing methods
suffer from low accuracy and efficiency given a small number
of tests, making it practically impossible to quickly obtain
accurate testing and evaluation results. We deal with this
problem by searching for a fixed few-shot testing scenario set
to mitigate the uncertainty resulting from the limited number
of tests and minimizing the upper bound of the evaluation
error. A similarity network is employed to learn the features
of the scenario space using surrogate models. The results
show that proposed method significantly improves accuracy
in few-shot testing cases and generates for the first time a
practically acceptable upper bound of the evaluation error with
a certain confidence level. This would bring the possibility
for reliable and rapid testing of AVs. We provide simulation
experiments in cut-in case in this paper. Theoretically, the
FST method can be applied in complex scenarios and real-
world AV testing. The application of FST method in real-world
interactive scenarios will be an important research direction.
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