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 A B S T R A C T

Efficient and accurate safety testing and evaluation are crucial for autonomous vehicles (AVs). 
Recent studies have utilized prior information, such as surrogate models, to enhance testing 
efficiency by deliberately generating safety-critical scenarios. However, discrepancies between 
this prior knowledge and actual AV performance can undermine their effectiveness. To address 
this challenge, adaptive testing methods dynamically adjust testing policies based on posterior 
information of AVs, such as testing results. Most existing approaches focus on adaptively 
optimizing testing policies during pre-tests, yet neglecting how to adapt the testing policies 
in the large-scale testing process that is required for unbiased safety performance evaluation. 
To fill this gap, we propose an adaptive testing framework that continuously optimizes testing 
policies throughout large-scale testing. Our approach iteratively learns AV dynamics through 
deep learning and optimizes testing policies based on the learned dynamics using reinforcement 
learning. To tackle the challenge posed by the rarity of safety-critical events, our method 
focuses exclusively on learning safety-critical states in both the dynamics learning and the policy 
optimization processes. Additionally, we enhance evaluation robustness by integrating multiple 
pre-trained testing policies and optimizing their combination coefficients. To accurately assess 
safety performance, we evaluate testing results obtained from various testing policies using 
adaptive importance sampling. Experimental validation in overtaking and unprotected left-turn 
scenarios demonstrates the significant evaluation efficiency of our method.

1. Introduction

Safety testing and evaluation are critical components in the development and deployment of AVs. One recommended method 
for assessing the safety performance (e.g., estimating crash rates) of AVs is to test them in naturalistic driving environment (NDE), 
observe their behaviors, and statistically compare it to that of human drivers. However, the rarity of safety-critical events (e.g., near-
misses and crashes) in NDE necessitates large-scale testing to evaluate AV safety comprehensively, often requiring testing mileage 
to extend into the billions of miles (Kalra and Paddock, 2016). In recent years, substantial research advances have been made in 
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Fig. 1. Illustration of three adaptive testing paradigms, each targeting a different stage: (1) The pre-test stage aimed at adapting the testing policy toward the AV 
under test using minimal number of tests. Note that the testing policy is the driving policy of BVs interacting with the AV under test, modeled as a probabilistic 
distribution of actions given the current traffic state. (2) The large-scale testing stage involving extensive scenario generation and testing for statistically robust 
and unbiased evaluation of AV performance metrics. (3) The evaluation stage that aims to evaluate the performance metrics from the testing results. This paper 
focuses on the large-scale testing stage, introducing an adaptive testing framework that continuously optimizes testing policies.

improving the efficiency of AV testing and evaluation (Li et al., 2016, 2018, 2019; Menzel et al., 2018; Tian et al., 2018; Bagschik 
et al., 2018; Norden et al., 2019; Klischat and Althoff, 2019; Tuncali et al., 2019; Sinha et al., 2020; Nonnengart et al., 2020; Weng 
et al., 2020, 2021; Nalic et al., 2020; Li et al., 2021; Wang et al., 2021; Chen et al., 2021; Chelbi et al., 2022; Rempe et al., 2022). 
A key concept in these studies is leveraging prior knowledge of AVs, such as surrogate models (SMs), to generate testing scenarios 
(i.e., temporal sequences of traffic scenes (Ulbrich et al., 2015)) rich in safety-critical events. These SMs effectively capture the overall 
characteristics of AVs, thus significantly enhancing testing efficiency (Feng et al., 2020a,c, 2021; Li et al., 2024a,b). However, the 
high complexity and black-box nature of AVs lead to discrepancies between SMs and real AV performance. This surrogate-to-real 
gap can severely reduce the effectiveness of the generated testing scenarios in evaluating the safety performance of diverse AVs.

To address this challenge, the core concept of existing adaptive testing methods (Zhao et al., 2016; Mullins et al., 2017, 2018; 
Koren et al., 2018; O’Kelly et al., 2018; Corso et al., 2019; Feng et al., 2020b; Sun et al., 2021b; Wang et al., 2022; Yang et al., 2022, 
2023, 2025; Gong et al., 2023; Zhou et al., 2023, 2024) is to dynamically adjust the testing policy based on posterior information of 
AVs, such as testing results. As more testing results are gathered, the posterior information of AVs is progressively enriched, enabling 
the optimization of testing policies that are better tailored to the specific AV under test. Most existing adaptive testing approaches 
focus on efficiently optimizing testing policies through a few pre-tests, and then unbiasedly estimate the safety performance of AVs 
through large-scale testing, utilizing techniques such as importance sampling (Zhao et al., 2016; Feng et al., 2020b; Gong et al., 
2023; Yang et al., 2025). In importance sampling, the testing policies (i.e., importance functions) must meet certain criteria to ensure 
evaluation unbiasedness (Owen, 2013). With the large-scale testing results, the estimation efficiency of performance metrics can be 
further improved during the evaluation stage (Yang et al., 2022, 2023). The three adaptive testing stages mentioned are illustrated 
in Fig.  1.

Most existing adaptive testing methods have not addressed adaptive testing during the large-scale testing stage that is required 
for unbiased safety performance evaluation. The primary distinction between adaptive testing in the pre-test stage and the large-
scale testing stage lies in how posterior information is collected. In the pre-test stage, posterior information is actively gathered 
through specially designed pre-testing policies aimed at minimizing the surrogate-to-real gap and optimizing testing policies with 
minimal tests. In contrast, during large-scale testing, posterior information is gathered reactively through testing policies that aim 
to efficiently and accurately evaluate the safety performance of AVs. Consequently, it is challenging to leverage such information 
to further optimize the testing policies during the large-scale testing stage, while maintaining the unbiasedness of the performance 
metrics. This optimization is particularly challenging due to the curse of rarity (CoR) (Liu and Feng, 2024), as the safety-critical 
scenarios (e.g., near-misses and crashes) sampled by the testing policies are usually rare in the high-dimensional scenario spaces 
involving numerous sequential decision variables of road participants.

To address this challenge, we propose a novel adaptive testing framework that continuously optimizes testing policies during 
large-scale testing, as shown in Fig.  2. While existing adaptive testing methods focus primarily on optimizing testing policies in the 
pre-test stage, they often fail to utilize the abundant posterior information generated during large-scale testing to further refine these 
policies. This oversight limits their ability to adaptively focus on emerging safety-critical scenarios, especially in high-dimensional 
scenarios where safety-critical events are rare. Our method explicitly addresses this gap by learning AV dynamics based on posterior 
information (i.e., testing results) and using the learned dynamics to generate simulation testing results for testing policy optimization 
via reinforcement learning (RL). Two main challenges arise. First, because testing policies must ensure unbiased evaluation, safety-
critical dynamics data in testing scenarios are inherently rare. This rarity renders ordinary deep learning methods highly inefficient 
for learning AV dynamics, as they suffer from the CoR. Second, due to the limited safety-critical dynamics data, the learned AV 
dynamics may be more accurate in certain states but lack robustness across the entire state space. To overcome these issues, we first 
focus on learning AV dynamics from safety-critical dynamics data rather than from all data. We then optimize the testing policies 
2 
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Fig. 2. Illustration of the adaptive testing framework. The AV dynamics is learned using only safety-critical states (i.e., traffic scenes where the AV may crash 
with background vehicles), and the testing policy is then optimized based on the learned dynamics through dense reinforcement learning. Note that traffic scenes 
are snapshots of traffic scenarios (Ulbrich et al., 2015). Evaluation robustness is improved by utilizing multiple pre-trained testing policies and optimizing their 
combination coefficients. The testing results from different testing policies are evaluated using adaptive importance sampling.

using dense reinforcement learning (Feng et al., 2023; Yang et al., 2025), which addresses the CoR by initializing from safety-critical 
states, employing an off-policy learning framework, editing the Markov chains by removing non-critical states and reconnecting 
safety-critical ones, and backpropagating rewards along the modified chains. To enhance robustness, we utilize multiple pre-trained 
policies and optimize their combination coefficients. Finally, to estimate performance metrics from the testing results of different 
testing policies, we employ adaptive importance sampling (Bugallo et al., 2017) to effectively aggregate these results. Validation in 
overtaking and unprotected left-turn scenarios demonstrates that our method significantly improves evaluation efficiency for various 
AVs.

The subsequent sections of this paper are structured as follows. In Section 2, we elaborate on the preliminary methods for 
testing AVs in NDE and formulate the adaptive testing problem in large-scale testing stage. Section 3 then addresses this problem 
by proposing an adaptive testing framework. Next, Section 4 provides a theoretical analysis of the convergence, consistency, and 
efficiency of our method. Finally, Section 5 validates the proposed method’s effectiveness through testing various AVs in overtaking 
and unprotected left-turn scenarios.

2. Problem formulation

This section introduces the foundational concepts for testing AVs in NDE in Section 2.1. To improve the evaluation efficiency 
of NDE, the naturalistic and adversarial driving environment (Feng et al., 2021) is introduced in Section 2.2. The adaptive testing 
problem in large-scale testing stage is subsequently formulated in Section 2.3. Table  1 presents the list of abbreviations, while Table 
2 summarizes the notation used.

2.1. Naturalistic driving environment testing

Let  ∶= ( ,,AV, 𝜙, 𝜋, 𝜌) represent the NDE, where  is the state space comprising the positions and velocities of the AV and 
background vehicles (BVs),  and AV are the action spaces (i.e., accelerations) for BVs and AV, respectively, 𝜙 and 𝜋 denote the 
driving policies of BVs and AV, respectively, and 𝜌 is the initial state distribution. The scenario can then be defined as 

𝒙 ∶= (𝒔0,𝒂0,… , 𝒔𝑇−1,𝒂𝑇−1, 𝒔𝑇 ) ∈  , (1)

where 𝒔𝑡 ∈  represents the state at time 𝑡, 𝒂𝑡 ∈  is the action of BVs at time 𝑡, 𝑇  is the time horizon, and  is the set of all feasible 
scenarios. In NDE, the naturalistic distribution 𝑝 of scenarios is 

𝑝(𝒙) ∶= 𝜌(𝒔0)
𝑇−1
∏

𝑡=0
𝜙(𝒂𝑡|𝒔𝑡)𝑃𝜋 (𝒔𝑡+1|𝒔𝑡,𝒂𝑡), ∀𝒙 ∈  , (2)

where 𝑃  is the state transition probability associated with the AV policy 𝜋.
𝜋

3 
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Table 1
List of abbreviations.
 Abbreviation Definition  
 AAR average acceleration ratio  
 AV autonomous vehicle  
 BV background vehicle  
 CoD curse of dimensionality  
 CoR curse of rarity  
 FVDM full velocity difference model  
 IDM intelligent driver model  
 LV leading vehicle  
 MSE mean squared error  
 NADE naturalistic and adversarial driving environment 
 NDE naturalistic driving environment  
 NeuDyM neural dynamics model  
 RHW relative half-width  
 RL reinforcement learning  
 SM surrogate model  

Table 2
Summary of notation.
 Notation Definition Notation Definition  
 𝒂,𝒂𝑡 BVs’ action, BVs’ action at time 𝑡 𝑅1 , 𝑅2 range between LV and BV, BV and AV  
 𝒂AV action of AV �̇�1 , �̇�2 range rate between LV and BV, BV and AV  
 𝑎min , 𝑎max min and max accelerations R set of real numbers  
 𝑨𝑡 action random variable of BVs 𝒔, state, state space  
 𝑨AV action random variable of AV 𝒔𝑡 ,𝑺𝑡 state at time 𝑡, random variable of 𝒔𝑡  
  action space of BVs crash set of crash states  
 AV action space of AV 𝑐 set of safety-critical states  
 𝐵 batch size 𝑡, 𝑇 time step, time horizon  
 (𝑘) set of testing results at update step 𝑘 𝑐 set of critical time steps  
  naturalistic driving environment 𝑉 , 𝑉 ∗ criticality, optimal criticality  
 𝐹 crash event 𝑤,𝑊 importance policy weight, importance weight  
  𝜎-algebra 𝑊 (𝑘) importance weight at update step 𝑘  
 I𝐹 indicator function of 𝐹  scenario space  
 𝐽 number of pre-trained maneuver challenges 𝒙,𝑿 scenario, scenario random variable  
 𝑘 update step in adaptive testing 𝑣LV , 𝑣BV , 𝑣AV longitudinal velocities of LV, BV, AV  
  loss function 𝑥LV , 𝑥BV , 𝑥AV longitudinal positions of LV, BV, AV  
 𝑛𝑘 number of tests in update step 𝑘 𝛼, 𝛼𝑗 combination coefficients  
 𝑛(𝑘) total number of tests up to update step 𝑘 𝛼(𝑘) combination coefficients at update step 𝑘  
 N set of natural numbers 𝛾 discount ratio  
 𝑝 naturalistic distribution 𝛿𝑡 temporal difference error at time 𝑡  
 P𝑝 probability measure 𝜇 crash rate in NDE  
 𝑃𝜋 state transition probability �̂�𝑝 estimation of 𝜇 in NDE  
  power set �̂�𝑞 estimation of 𝜇 in NADE  
 𝑞 importance function �̃�(𝑘) estimation of 𝜇 by adaptive testing at update step 𝑘 
 𝑞∗ optimal importance function 𝜈𝑡 learning rate at time 𝑡  
 𝑞(𝑘) importance function at update step 𝑘 𝜎2𝑞 asymptotic variance of �̂�𝑞  
  function space of importance functions 𝜙 driving policy of BVs  
 𝑄 maneuver challenge 𝜓 importance policy  
 𝑄∗ optimal maneuver challenge 𝜓∗ optimal importance policy  
 𝑄(𝑘) maneuver challenge at update step 𝑘 𝜋 driving policy of AV  
 𝑄𝑗 pre-trained maneuver challenges 𝜋(𝑘) NeuDyM policy at update step 𝑘  
 𝑄𝛼 𝛼-combination of 𝑄𝑗 𝜌 initial state distribution  
 𝑟, 𝑅 reward, reward random variable 𝜖 defensive parameter  

Consider the probability space ( , ,P𝑝), where  ∶= () is the 𝜎-algebra, () ∶= { ′ ∶  ′ ⊆ } is the power set 
of  , and P𝑝({𝒙}) ∶= 𝑝(𝒙) for all 𝒙 ∈  is the probability measure. Denote the crash event between the AV and BVs as 
𝐹 ∶= {𝒙 ∈  ∶ 𝒔𝑇 ∈ crash} ∈  , where crash represents the set of crash states. The crash rate in NDE is then given by 

𝜇 ∶= P𝑝(𝐹 ) = E𝑝[I𝐹 (𝑿)], (3)

where 𝑿 ∶ 𝒙 ↦ 𝒙 for all 𝒙 ∈  is the scenario random variable, and I𝐹  is the indicator function of 𝐹 , 

I𝐹 (𝑿) =

{

1, if 𝑿 ∈ 𝐹 ,
(4)
0, otherwise.

4 
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Algorithm 1: Scheme of the adaptive testing process in pre-test stage
Input: Naturalistic distribution 𝑝, AV, acquisition function
Output: Optimized importance function

1 while not stop do
2 Choose testing scenarios according to the acquisition function;
3 Test the AV in testing scenarios;
4 Update acquisition function and importance function using testing results;
5 end 
6 return Optimized importance function;

According to Monte Carlo theory (Owen, 2013), the crash rate can be estimated in NDE as 

�̂�𝑝 ∶=
1
𝑛

𝑛
∑

𝑖=1
I𝐹 (𝑿𝑖), 𝑿𝑖 ∼ 𝑝, (5)

where 𝑛 is the number of tests, and 𝑿𝑖 are scenario random variables sampled independently and identically distributed (i.i.d.) from 
the naturalistic distribution 𝑝.

2.2. Naturalistic and adversarial driving environment testing

The evaluation efficiency of crash rate in NDE is severely hindered due to the CoR (Liu and Feng, 2024), as the rarity of crash 
events requires an impractically large number of testing miles-often reaching hundreds of millions or even billions (Kalra and 
Paddock, 2016; Zhang et al., 2018). Using importance sampling to replace the naturalistic distribution 𝑝 with an importance function 
𝑞 can enhance the evaluation efficiency (Zhao et al., 2016, 2017; Feng et al., 2020a,c; Ren et al., 2025). However, the importance 
sampling approach cannot be directly applied in high-dimensional scenarios because of the curse of dimensionality (CoD) (Au and 
Beck, 2003), as the estimation variance of the crash rate using non-optimal importance functions increases exponentially with 
the number of scenario dimensions. To address this issue, the naturalistic and adversarial driving environment (NADE) has been 
proposed (Feng et al., 2021), which applies importance sampling only to critical variables at critical time steps, while retaining the 
naturalistic distribution for other variables. Specifically, the importance function is 

𝑞(𝒙) ∶= 𝜌(𝒔0)
𝑇−1
∏

𝑡=0
𝜓(𝒂𝑡|𝒔𝑡)𝑃𝜋 (𝒔𝑡+1|𝒔𝑡,𝒂𝑡), ∀𝒙 ∈  , (6)

where 𝜓 is the importance policy defined as 

𝜓(𝒂|𝒔) ∶=
⎧

⎪

⎨

⎪

⎩

𝜙(𝒂|𝒔), if 𝒔 ∉ 𝑐 ,

𝜖𝜙(𝒂|𝒔) + (1 − 𝜖)
𝑄(𝒔,𝒂)𝜙(𝒂|𝒔)

𝑉 (𝒔)
, if 𝒔 ∈ 𝑐 .

(7)

Here, 𝑐 represents the set of safety-critical states, 𝜖 ∈ (0, 1) is a defensive parameter, 𝑄(𝒔,𝒂) ∈ [0, 1] is the maneuver challenge 
indicating the crash probability when BVs take action 𝒂 in state 𝒔, 𝑉 (𝒔) ∶= E𝜙[𝑄(𝒔,𝑨)] ∈ [0, 1] is the criticality (i.e., the expected 
crash probability when BVs take actions according to the driving policy 𝜙 in state 𝒔) (Sun et al., 2021a; Bai et al., 2024), and 
𝑨 ∶ 𝒙 ↦ 𝒂 for all 𝒙 ∈  is the action random variable. The crash rate can then be estimated in NADE as 

�̂�𝑞 ∶=
1
𝑛

𝑛
∑

𝑖=1

I𝐹 (𝑿𝑖)𝑝(𝑿𝑖)
𝑞(𝑿𝑖)

= 1
𝑛

𝑛
∑

𝑖=1
I𝐹 (𝑿𝑖)𝑊 (𝑿𝑖), 𝑿𝑖 ∼ 𝑞, (8)

where 𝑊 (𝒙) ∶= 𝑝(𝒙)∕𝑞(𝒙) =
∏

𝑡∈𝑐 𝑤(𝒂𝑡|𝒔𝑡) for all 𝒙 ∈  is the importance weight, 𝑤(𝒂|𝒔) ∶= 𝜙(𝒂|𝒔)∕𝜓(𝒂|𝒔) is the importance policy 
weight, and 𝑐 ∶= {𝑡 ∈ {0,… , 𝑇 − 1} ∶ 𝒔𝑡 ∈ 𝑐} denotes the set of critical time steps.

2.3. Adaptive testing in large-scale testing stage

While NADE have demonstrated great potential for efficient testing and evaluation of AVs using the importance function derived 
from a single SM (Feng et al., 2021, 2023), its evaluation efficiency is significantly affected by the surrogate-to-real gap. In NADE, 
this gap refers to the discrepancies between the designed importance function and the optimal importance functions for different 
AVs. The adaptive testing method aims to address this issue. Mathematically, the objective of adaptive testing (in both pre-test 
stage and large-scale testing stage) is to minimize the variance of the crash rate estimate in NADE over the function space , which 
contains all probability distributions 𝑞 that satisfy 

𝑞(𝒙) > 0, ∀𝒙 ∈ {𝒙 ∈  ∶ I (𝒙)𝑝(𝒙) > 0}. (9)
𝐹

5 
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Algorithm 2: Scheme of the adaptive testing process in large-scale testing stage
Input: Naturalistic distribution 𝑝, AV, initial importance function
Output: Evaluation results of the AV

1 while not stop do
2 Choose testing scenarios according to the importance function;
3 Test the AV in testing scenarios;
4 Update importance function using testing results;
5 Evaluate performance metrics using testing results;
6 end 
7 return Evaluation results;

This optimization problem can be formulated as 

min
𝑞∈

𝜎2𝑞 ∶= Var𝑞

(

I𝐹 (𝑿)𝑝(𝑿)
𝑞(𝑿)

)

. (10)

By optimizing 𝑞 within the function space , the importance function can be customized for specific AVs, thereby improving the 
evaluation efficiency.

In the pre-test stage, one solution to the adaptive testing problem (10) is to employ the Bayesian optimization framework (Snoek 
et al., 2012), where acquisition functions can be designed to identify the next most informative scenarios, as shown in Algorithm 
1. The primary goal of these acquisition functions is to minimize the difference between 𝑞 and the optimal importance function 
𝑞∗ with as few tests as possible. For example, the acquisition function can be designed to sample the next testing scenario 𝒙′ such 
that the absolute gap between 𝑞(𝒙′) and 𝑞∗(𝒙′) is maximized across the scenario space. In contrast, during large-scale testing, to 
accurately and efficiently evaluate performance metrics, the testing scenarios are sampled from importance functions (either initially 
designed or optimized through adaptive testing) that meet the condition in Eq. (9), as shown in Algorithm 2. As a result, the testing 
scenarios cannot be deliberately selected during large-scale testing, and we must rely on the testing scenarios and results generated 
by the importance functions to optimize them. This optimization is highly challenging due to the CoR, as the informative scenarios 
(e.g., crashes) sampled by the importance functions are so rare that an impractically large number of tests is needed to optimize 𝑞
effectively.

From Eq. (6), it is clear that optimizing 𝑞 is equivalent to optimizing the importance policy 𝜓 . According to importance sampling 
theory (Owen, 2013), the optimal importance policy is given by 𝜓∗(𝒂|𝒔) ∶= 𝑄∗(𝒔,𝒂)𝜙(𝒂|𝒔)∕𝑉 ∗(𝒔) for all 𝒔 ∈  and 𝒂 ∈ , where 
𝑄∗ ∶= P𝑝(𝐹 |𝑺,𝑨) is the optimal maneuver challenge, and 𝑉 ∗ ∶= P𝑝(𝐹 |𝑺) is the optimal criticality. Thus, the key to adaptive 
testing is optimizing 𝑄 toward 𝑄∗ based on the currently available testing results. Let (𝑘) represent the testing scenarios and 
results accumulated up to update step 𝑘, and 𝑄(𝑘) denote the optimized maneuver challenge at update step 𝑘, for 𝑘 = 1, 2,… . The 
optimization of 𝑄(𝑘) based on (𝑘−1) can be formulated as a reinforcement learning problem. In our experiments, we designate the BV 
with the highest criticality—i.e., the one most likely to be involved in a crash with the AV—as the RL agent (Feng et al., 2021, 2023). 
This vehicle is referred to as the principal other vehicle (POV), resulting in a single-agent RL setup, while other BVs and the AV 
serve as the environment in the RL framework. We note that extending this approach to multiple BV agents is straightforward using 
multi-agent RL algorithms. Let  ∶= ( ,, 𝑅, 𝑃𝜋 , 𝜌, 𝛾) denote the Markov decision process, where  is the action space consisting 
of the POV’s acceleration, 𝑅 is the reward function defined as 𝑅(𝒔) ∶= Icrash (𝒔) for all 𝒔 ∈ , and 𝛾 ∈ (0, 1] is the discount factor. 
The optimal maneuver challenge 𝑄∗ can then be expressed as the state–action value function, i.e., 

𝑄∗ = E(𝜙,𝜋)
[

𝑅𝑡∶𝑇 |𝑺 𝑡,𝑨𝑡
]

, (11)

where 𝑡 is any time step, and 𝑅𝑡∶𝑇 ∶=
∑𝑇
𝜏=𝑡+1 𝛾

𝜏−𝑡−1𝑅𝜏 is the discounted sum of future rewards, with 𝑅𝜏 ∶= 𝑅 for all 𝜏 = 𝑡+ 1,… , 𝑇 .
The maneuver challenges 𝑄(𝑘) can then be trained using reinforcement learning based on (𝑘−1). However, this process encounters 

the CoR, as safety-critical states and actions are rare, and rewards (i.e., crash events) are highly sparse. As the rarity of the crash 
events increases, the amount of training data for reinforcement learning to effectively learn 𝑄(𝑘) increases significantly (Liu and 
Feng, 2024). To mitigate this issue, our previous work introduced the dense reinforcement learning method (Feng et al., 2023; Yang 
et al., 2025), which learns exclusively the safety-critical states during the temporal difference learning process. However, during 
testing, the number of safety-critical states in (𝑘−1) is far less than what is required for 𝑄(𝑘) to converge to 𝑄∗. We address this 
challenge in the following section.

3. Methods

This section presents our adaptive testing method. The core idea is to learn AV dynamics based on testing scenarios and results 
(𝑘−1), and then optimize maneuver challenges 𝑄(𝑘) based on the learned dynamics. Two primary issues emerge. First, the rarity 
of safety-critical dynamics data in testing scenarios renders ordinary deep learning for learning AV dynamics highly inefficient. 
Second, due to the limited availability of safety-critical dynamics data, the learned AV dynamics may not generalize well across the 
entire state space. To address the first issue, Section 3.1 introduces an adaptive dense reinforcement learning method to effectively 
learn maneuver challenges. To address the second, Section 3.2 formulates a quadratic programming for optimizing the combination 
6 
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coefficients of multiple maneuver challenges pre-trained with different SMs. In Section 3.3, we evaluate the crash rate using testing 
results obtained from continuously updated importance functions based on adaptive importance sampling. Finally, Section 3.4 
summarizes the complete adaptive testing algorithm.

3.1. Adaptive dense reinforcement learning

To effectively learn maneuver challenges 𝑄(𝑘), we propose an adaptive dense reinforcement learning method, which iteratively 
learns both the environment dynamics—specifically, the dynamics of the AV under test—through policy functions 𝜋(𝑘) and state–
action value functions (i.e., maneuver challenges) 𝑄(𝑘). Here, 𝑄(𝑘) ∶= E(𝜙,𝜋(𝑘))[𝑅𝑡∶𝑇 |𝑺 𝑡,𝑨𝑡] represents the optimal maneuver challenges 
under the AV policies 𝜋(𝑘). To capture the dynamics 𝜋(𝑘), we train a deep neural network using the dynamics data collected during 
testing, referred to as the neural dynamics model (NeuDyM). The training of NeuDyM faces the CoR, as safety-critical dynamics data 
is so rare that ordinary training methods (i.e., using all dynamics data) fail to capture meaningful information about safety-critical 
maneuvers. To resolve this challenge, we propose to use exclusively the safety-critical dynamics data to train NeuDyM. Specifically, 
the gradient of the loss function  with respect to the NeuDyM parameters 𝜽 is 

�̃� ∶= 1
𝐵

𝐵
∑

𝑖=1

𝜕(𝑺 𝑖,𝑨AV𝑖 )
𝜕𝜽

I𝑐 (𝑺 𝑖), (12)

where 𝐵 ∈ N>0 is the batch size, and 𝑨AV𝑖 ∶ 𝒙 ↦ 𝒂AV ∈ AV is the action random variable of AV. By focusing solely on safety-critical 
dynamics data, the variance in gradient estimation for the loss function is significantly reduced, enabling NeuDyM to effectively 
learn AV’s safety-critical maneuvers. We assume that the safety-critical dynamics data collected during the large-scale testing process 
provide sufficient coverage of the safety-critical states for learning the NeuDyM policy. Although these data may be sparse initially, 
it accumulates progressively as testing continues, enabling the NeuDyM policy to be effectively trained—albeit not to perfection—on 
safety-critical states.

We then utilize the NeuDyM policies 𝜋(𝑘) to learn the maneuver challenges 𝑄(𝑘) through dense reinforcement learning (Feng 
et al., 2023; Yang et al., 2025). The process begins by initializing �̂�(𝒔,𝒂) = 0 for all 𝒔 ∈  and 𝒂 ∈ . In each training iteration, 
the initial state is uniformly sampled from 𝑐 , after which the BVs follow the uniform behavior policy while the AV follows the 
NeuDyM policy 𝜋(𝑘). In dense reinforcement learning, the update rule for �̂� is 

�̂�(𝑺 𝑡,𝑨𝑡) ← �̂�(𝑺 𝑡,𝑨𝑡) + 𝜈𝑡𝛿𝑡I𝑐 (𝑺 𝑡), (13)

where 𝜈𝑡 is the learning rate, and 𝛿𝑡 is the temporal difference error defined as 
𝛿𝑡 ∶= 𝑅𝑡+1 + 𝛾E𝜙

[

�̂�(𝑺 𝑡+1,𝑨𝑡+1)|𝑺 𝑡+1
]

− �̂�(𝑺 𝑡,𝑨𝑡). (14)

Note that training the NeuDyM policy exclusively on safety-critical data may introduce bias for non-safety-critical states. However, 
our method does not rely on accurate modeling of the AV’s behavior across the entire state space. Instead, the NeuDyM policy is 
used solely to simulate the AV’s actions when generating training data for maneuver challenge learning via dense reinforcement 
learning. In this process, initial states are sampled from safety-critical states, BVs’ actions are drawn from a uniform distribution, 
and AV actions are derived from the NeuDyM policy. Therefore, since training is confined to safety-critical states, any bias in 
non-safety-critical states do not impact the effectiveness of maneuver challenge training.

Under mild assumptions, dense reinforcement learning is guaranteed to converge almost surely to 𝑄(𝑘) (see Theorem 1 in Yang 
et al., 2025). However, the learned 𝑄(𝑘) may not generalize well to out-of-distribution state–action pairs. Specifically, the 𝑄(𝑘) values 
are typically more accurate within a subspace of the entire state–action space—primarily the space covered by the safety-critical 
dynamics data in (𝑘−1)—while values in other subspaces may degrade, potentially becoming less accurate than before. As a result, 
directly applying the importance function derived from 𝑄(𝑘) for AV testing and evaluation can be risky. We address this issue in the 
following subsection.

3.2. Combination coefficient optimization

To improve the evaluation robustness of 𝑄(𝑘), we propose using a convex combination of multiple maneuver challenges 𝑄𝑗
for 𝑗 = 1,… , 𝐽 , pre-trained with diverse SMs, to create a constrained optimization space. The combination coefficients are then 
optimized by solving the following regression problem: 

min
𝜶∈R𝐽

1
2

∑

(𝒔,𝒂)∈𝑐×

[

𝑄(𝑘)(𝒔,𝒂) −𝑄𝜶(𝒔,𝒂)
]2

s.t. 𝟏⊤𝜶 = 1, 𝜶 ⩾ 𝟎,
(15)

where 𝑄𝜶 ∶=
∑𝐽
𝑗=1 𝛼𝑗𝑄𝑗 is the 𝜶-combination of 𝑄𝑗 , and 𝜶 = [𝛼1,… , 𝛼𝐽 ]⊤ is the vector of combination coefficients. This regression 

problem is a quadratic programming and can be solved using standard convex optimization tools such as CVXOPT (Andersen et al., 
2004). Let 𝜶(𝑘) represent the solution to Eq. (15). The importance functions 𝑞(𝑘) can then be derived from Eqs. (6) and (7) using 𝑄𝜶(𝑘)

in place of 𝑄. By iteratively updating the importance functions based on testing results and sampling new testing scenarios from 
the updated importance functions to gather more results, we establish the adaptive testing process, except for crash rate estimation, 
which is elaborated in the next subsection.
7 
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Fig. 3. Illustration of the workflow of the adaptive testing framework.

3.3. Adaptive importance sampling

To estimate the crash rate based on the testing results obtained from different importance functions, we propose applying adaptive 
importance sampling techniques (Bugallo et al., 2017) to aggregate these results effectively. The crash rate can be estimated using 
adaptive importance sampling as 

�̃�(𝑘) = 1
𝑛(𝑘)

𝑘
∑

𝜅=1

𝑛𝜅
∑

𝑖=1
I𝐹 (𝑿𝜅,𝑖)𝑊 (𝜅)(𝑿𝜅,𝑖), 𝑿𝜅,𝑖 ∼ 𝑞(𝜅), (16)

where 𝑛(𝑘) ∶=
∑𝑘
𝜅=1 𝑛𝜅 is the total number of tests conducted, 𝑛𝜅 is the number of testing scenarios sampled from 𝑞(𝜅), and 

𝑊 (𝜅) ∶= 𝑝∕𝑞(𝜅), for 𝜅 = 1,… , 𝑘 and 𝑘 = 1, 2,… . It is worth noting that various adaptive importance sampling methods are 
available (see Bugallo et al., 2017 and references therein). We use Eq. (16) due to its simplicity, effectiveness, and because it 
provides theoretical guarantees of consistency and approximate normality—properties often lacking in most adaptive importance 
sampling approaches (Bugallo et al., 2017). In Section 4, we will show that our method ensures both consistency and approximate 
normality under mild assumptions.

3.4. Adaptive testing workflow and algorithm

The adapting testing workflow is shown in  Fig.  3. The pipeline for update step 𝑘 (where 𝑘 ⩾ 1) is 

(𝑘) (12)
←←←←←←←←←←←←←←←←←→ 𝜋(𝑘+1)

(13)
←←←←←←←←←←←←←←←←←→ 𝑄(𝑘+1) (15)

←←←←←←←←←←←←←←←←←→ 𝑄𝜶(𝑘+1)
(6) and (7)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑞(𝑘+1)

(16)
←←←←←←←←←←←←←←←←←→ ((𝑘+1), �̃�(𝑘+1)). (17)

The core idea is to train the NeuDyM policies 𝜋(𝑘+1) using only safety-critical dynamics data and apply dense reinforcement learning 
to learn the maneuver challenges 𝑄(𝑘+1). Next, the combination coefficients 𝜶(𝑘+1) are optimized through solving a quadratic 
programming problem. Following this, the importance functions 𝑞(𝑘+1) are updated, and testing scenarios are sampled from 𝑞(𝑘+1). 
Then the crash rate is estimated using adaptive importance sampling. This iterative process continues until the termination criteria 
are met. We use the relative half-width (RHW) (Zhao et al., 2016) as the stopping criterion, with the threshold set at 0.3. In summary, 
the adaptive testing process is given in Algorithm 3.

4. Theoretical analysis

This section presents a theoretical analysis of the proposed adaptive testing method, covering the convergence analysis of 
adaptive dense reinforcement learning in Section 4.1, the consistency analysis of adaptive testing in Section 4.2, and the efficiency 
analysis of adaptive testing in Section 4.3.
8 
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Algorithm 3: Adaptive testing with adaptive importance sampling
Input: naturalistic distribution 𝑝, surrogate maneuver challenges 𝑄𝑗 , 𝑗 = 1,… , 𝐽 , number of testing scenarios 𝑛𝑘 at each 

update step 𝑘
Output: crash rate estimate

1 Initialize 𝑄𝛼(1) = (1∕𝐽 )
∑𝐽
𝑗=1𝑄𝑗 , 𝓁 = 1, 𝓁th = 0.3, 𝑘 = 1;

2 while 𝓁 > 𝓁th do
3 Compute 𝑞(𝑘) based on Eqs. (6) and (7) with 𝑄𝛼(𝑘)  for 𝑄;
4 Sample 𝑛𝑘 testing scenarios from 𝑞(𝑘);
5 Estimate crash rate �̃�(𝑘) using adaptive importance sampling via Eq. (16);
6 Set 𝓁 ← relative half-width of �̃�(𝑘);
7 Set (𝑘) ← testing scenarios and results up to now;
8 Set 𝑘← 𝑘 + 1;
9 Train NeuDyM policy 𝜋(𝑘) based on Eq. (12);
10 Apply dense reinforcement learning to learn 𝑄(𝑘) using policy 𝜋(𝑘);
11 Solve the quadratic programming in Eq. (15) to update 𝛼(𝑘) (e.g., via CVXOPT (Andersen et al., 2004));
12 end 
13 Return �̃�(𝑘);

4.1. Convergence analysis

First, we prove the convergence of adaptive dense reinforcement learning, i.e., under certain assumptions, the maneuver 
challenge 𝑄(𝑘) learned by our adaptive testing method converges almost surely to the optimal maneuver challenge 𝑄∗.

Assumption 1.  The NeuDyM policies 𝜋(𝑘) converge to 𝜋† ∈ 𝛱 almost surely, i.e., P𝑝
(

lim𝑘→∞ 𝜋(𝑘) = 𝜋†
)

= 1, denoted as 𝜋(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝜋†.

Assumption 2.  The assumptions of Theorem 1 in Yang et al. (2025) hold for all 𝜋(𝑘), 𝑘 = 1, 2,… .

Theorem 1.  Suppose that Assumptions  1 and 2 hold, then 𝑄(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝑄†, where 𝑄† ∶= E(𝜙,𝜋†)[𝑅𝑡∶𝑇 |𝑺 𝑡,𝑨𝑡] and 𝑡 is any time step.

Proof.  From Assumption  1 we have 𝜋(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝜋†. Under Assumption  2, the dense reinforcement learning algorithm will converge to 

𝑄(𝑘) for any NeuDyM policy 𝜋(𝑘). Since 𝜋(𝑘)(𝒂|𝒔) ⩽ 1 for all 𝒔 ∈ , 𝒂 ∈ , and 𝑘 ⩾ 1, each 𝜋(𝑘) is dominated by the constant function 
1. Therefore, by the Lebesgue’s dominated convergence theorem (Rudin, 1987), it follows that 𝑄(𝑘) a.s.

←←←←←←←←←←←←←←→ 𝑄†. □

Corollary 1.  If 𝜋(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝜋 and Assumption  2 holds, then 𝑄(𝑘) a.s.

←←←←←←←←←←←←←←→ 𝑄∗.

Proof.  This follows directly from Theorem  1. □

Remark 1.  As shown in Theorem  1, if NeuDyM policies 𝜋(𝑘) can converge to some policy 𝜋† (not necessarily optimal) almost surely 
and Assumption  2 holds, then 𝑄(𝑘) will converge to 𝑄† almost surely. Assumption  2 is necessary to ensure the convergence of dense 
reinforcement learning. Since NeuDyM is a deep neural network, it can approximate AV’s driving policy 𝜋 well given infinite training 
data, though convergence to 𝜋 cannot be guaranteed. Nonetheless, Corollary  1 shows that if 𝜋(𝑘) converges to 𝜋 almost surely and 
Assumption  2 holds, then 𝑄(𝑘) will converge to 𝑄∗ almost surely. In practice, due to limited data and the approximation capacity 
of neural networks, the convergence to the exact driving policy 𝜋 may not be fully realized. However, our empirical results show 
that even approximate convergence can lead to substantial gains in optimizing maneuver challenges.

4.2. Consistency analysis

Next, we prove the consistency of the proposed adaptive testing method, i.e., �̃�(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝜇 as 𝑘 → ∞. The proof is based on Lemma 

1 (Oh and Berger, 1992). To elaborate on this lemma, we define some notations used in Oh and Berger (1992). Suppose the goal is to 
estimate 𝜂 = E𝑓 [𝜑], where 𝑓 is a probability distribution. Denote the parametric family of importance functions as  ∶= {𝑔𝜆 ∶ 𝜆 ∈ 𝛬}, 
where 𝛬 is the parameter space. At each update step 𝑘 = 1, 2,… , denote the parameter as 𝜆(𝑘) and the corresponding importance 
function as 𝑔(𝑘) ∶= 𝑔𝜆(𝑘) . The estimate for 𝜂 is given by 

�̂�(𝑘) = 1
𝑛(𝑘)

𝑘
∑

𝜅=1

𝑛𝜅
∑

𝑖=1

𝜑(𝑿𝜅,𝑖)𝑓 (𝑿𝜅,𝑖)
𝑔(𝜅)(𝑿𝜅,𝑖)

, 𝑿𝜅,𝑖 ∼ 𝑔(𝜅). (18)

Assumption 3.  The importance functions 𝑔(𝑘), 𝑘 = 1, 2,… , have the same support as 𝑓 .
9 
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Assumption 4.  The importance weights 𝑓∕𝑔(𝑘) are bounded for all 𝑘 = 1, 2,… .

Assumption 5.  The expectation 𝜂 = E𝑓 [𝜑] exists.

Lemma 1.  Suppose that Assumptions  3, 4 and 5 hold and 𝜑 has finite second moment, then �̂�(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝜂.

Proof.  This is the Theorem 3.1 in Oh and Berger (1992). □

Theorem 2.  Let �̃�(𝑘) be given by Eq. (16). Then we have �̃�(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝜇.

Proof.  The correspondence to Lemma  1 is established by associating 𝜑 with I𝐹 , 𝑓 with 𝑝, and 𝑔 with 𝑞. We then verify Assumptions 
3, 4 and 5 accordingly.
(1) Verification of Assumption  3. From Eq. (7), we know that 𝜓 (𝑘)(𝒂|𝒔) > 0 whenever 𝜙(𝒂|𝒔) > 0 for all 𝑘 = 1, 2,… . Therefore, 

𝑞(𝑘)(𝒙) > 0 whenever 𝑝(𝒙) > 0 for all 𝑘 = 1, 2,… , meaning that all 𝑞(𝑘) share the same support as 𝑝.
(2) Verification of Assumption  4. The importance policy weight for any critical state 𝒔 ∈ 𝑐 is 

𝑤(𝒂|𝒔) = 𝜙(𝒂|𝒔)

𝜖𝜙(𝒂|𝒔) + (1 − 𝜖)
𝑄(𝒔,𝒂)𝜙(𝒂|𝒔)

𝑉 (𝒔)

⩽ 𝜙(𝒂|𝒔)
𝜖𝜙(𝒂|𝒔)

= 1
𝜖
, ∀𝒂 ∈ .

(19)

Thus, the importance weight for all 𝒙 ∈  is given by 

𝑊 (𝒙) =
∏

𝑡∈𝑐

𝑤(𝒂𝑡|𝒔𝑡) ⩽
1
𝜖𝐿
, (20)

where 𝐿 is the maximum number of critical time steps. Therefore, the importance weights 𝑊 (𝑘) are bounded by 1∕𝜖𝐿 for all 
𝑘 = 1, 2,… .

(3) Verification of Assumption  5. Clearly, 𝜂 = E𝑓 [𝜑] = E𝑝[I𝐹 ] = 𝜇 exists.
Note that (I𝐹 )2 = I𝐹 , which implies that I𝐹  has finite second moment. Thus, the theorem follows. □

Remark 2.  As shown in Theorem  2, our adaptive testing method converges to the true crash rate almost surely. That is, the 
probability that the crash rate estimated by our method converges to the true value approaches one as the number of samples 
tends to infinity. This is achieved primarily by employing the defensive importance sampling paradigm in Eq. (7), where we 
incorporate the naturalistic policy 𝜙 with probability 𝜖, which ensures that Assumptions  3 and 4 are satisfied. Furthermore, since 
𝜂 = E𝑓 [𝜑] = E𝑝[I𝐹 ] = 𝜇 represents the crash rate we aim to estimate, Assumption  5 is clearly met. Practically, the experimental 
results shown in Fig.  8(a)–(c) in Section 5.2 and Fig.  11(a)–(c) in Section 5.3 will demonstrate that the crash rate estimates from 
our adaptive testing method closely align with the ground truth values obtained via NDE. It is worth noting that in real-world 
applications, convergence may require a substantial number of samples, and computational limitations may affect the practical 
implementation of theoretical guarantees. Nonetheless, our method remains effective in producing accurate performance evaluations 
with significantly improved efficiency.

4.3. Efficiency analysis

Finally, we analyze the efficiency of the adaptive testing method. In addition to Assumptions  3, 4 and 5, we also require the 
following two additional assumptions.

Assumption 6.  The parameters 𝜆(𝑘) converge to 𝜆† ∈ 𝛬 almost surely, i.e., 𝜆(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝜆†.

Assumption 7.  Given Assumption  6, the importance functions 𝑔(𝑘) converge to 𝑔𝜆†  almost surely, i.e., 𝑔(𝑘)
a.s.
←←←←←←←←←←←←←←→ 𝑔𝜆† .

Lemma 2.  Suppose that Assumptions  3, 4, 5, 6 and 7 hold, 𝜑 has finite fourth moment, and ∑𝑘
𝜅=1 𝑛

2
𝜅∕

(

𝑛(𝑘)
)2

→ 0 as 𝑘→ ∞. Then 
√

𝑛(𝑘)
(

�̂�(𝑘) − 𝜂
) d
←←←←←←→ 

(

0, 𝜎2𝑔𝜆†
)

, (21)

where d←←←←←←→ denotes convergence in distribution, and 𝜎2𝑔𝜆† ∶= Var𝑔𝜆† (𝜑𝑓∕𝑔𝜆† ).

Proof.  This is the Theorem 3.2 in Oh and Berger (1992). □
10 
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Theorem 3.  Let �̃�(𝑘) be given by Eq. (16). Suppose that Assumptions  1 and 2 hold, and ∑𝑘
𝜅=1 𝑛

2
𝜅∕

(

𝑛(𝑘)
)2

→ 0 as 𝑘→ ∞. Then 
√

𝑛(𝑘)
(

�̃�(𝑘) − 𝜇
) d
←←←←←←→ 

(

0, 𝜎2
𝑞†

)

, (22)

where 𝜎2
𝑞†

∶= Var𝑞† (I𝐹 𝑝∕𝑞†) and 𝑞† is given by Eqs. (6) and (7) with 𝑄† in place of 𝑄.

Proof.  The correspondence to Lemma  2 follows from associating 𝜑 with I𝐹 , 𝑓 with 𝑝, 𝑔 with 𝑞, and 𝜆 with 𝑄. In the proof of 
Theorem  2, Assumptions  3, 4 and 5 have already been verified. Therefore, we only need to verify the remaining Assumptions  6 and
7.

(1) Verification of Assumption  6. Given Assumptions  1 and 2, Theorem  1 establishes that 𝑄(𝑘) a.s.
←←←←←←←←←←←←←←→ 𝑄†. Hence, Assumption  6 

holds.
(2) Verification of Assumption  7. Since 𝑄(𝑘) a.s.

←←←←←←←←←←←←←←→ 𝑄†, by the Lebesgue’s dominated convergence theorem (Rudin, 1987), we have 
𝑞(𝑘)

a.s.
←←←←←←←←←←←←←←→ 𝑞†.

Since (I𝐹 )4 = I𝐹 , it is clear that I𝐹  has finite fourth moment, which concludes the proof of this theorem. □

Remark 3.  Note that if 𝑛𝑘 ⩽ 𝑁 for some 𝑁 > 0 and for all 𝑘 = 1, 2,… , then we have 
𝑘
∑

𝜅=1

(

𝑛𝜅
𝑛(𝑘)

)2
⩽ 𝑘

(𝑁
𝑘

)2
= 𝑁2

𝑘
→ 0, 𝑘→ ∞. (23)

This can be easily achieved if 𝑛𝑘 are the same for all 𝑘 = 1, 2,… . Theorem  3 shows that if 𝑞(𝑘) converge almost surely to an 
importance function 𝑞† (not necessarily optimal), then the distributions of �̃�(𝑘) converge to 

(

𝜇, 𝜎2
𝑞†
∕𝑛(𝑘)

)

. This implies that as the 
importance functions are iteratively optimized, the asymptotic estimation variances of crash rates decrease and eventually converge 
to 𝜎2

𝑞†
. The closer the importance functions are optimized toward 𝑞∗, the more the estimation variance is reduced, and the greater 

the improvement in estimation efficiency. In practice, the convergence to the optimal importance function 𝑞∗ may not be feasible 
due to limited knowledge of the AV’s behavior model or high-dimensional scenario spaces. However, even partial convergence to a 
reasonably well-optimized 𝑞† still yields substantial variance reduction, as validated by our experimental results.

5. Results

This section first details the generation processes of NDE and NADE in Section 5.1. The testing and evaluation results under 
NDE, NADE, and adaptive testing are then presented for overtaking scenarios in Section 5.2, and for unprotected left-turn scenarios 
in Section 5.3.

5.1. Generation of NDE and NADE

The generation of NDE and NADE adheres to the methodology outlined in Feng et al. (2021).1 In NDE, the driving policies 
of BVs are aligned with naturalistic policies extracted from naturalistic driving data, which effectively replicates realistic traffic 
conditions (Yan et al., 2023; He et al., 2024). As a result, the crash rates estimated in NDE can be regarded as ground truth. In 
NADE, the driving policies of BVs are adjusted at critical moments using importance policies, while preserving naturalistic policies 
at other moments. Critical moments are identified by evaluating the criticality of each BV at every time step. Time steps where the 
criticality exceeds a specified threshold (e.g., zero) are marked as critical moments. The BV with the highest criticality is selected 
as the POV, and its driving policy is replaced with the importance policy.

To show the generalizability of our method, we select three distinct AVs:

(1) AV-I: the intelligent driver model (IDM) (Treiber et al., 2000);
(2) AV-II: a variation of IDM with different calibrated parameters (Sangster et al., 2013), used to test the robustness of our method 

to IDM parameter changes;
(3) AV-III: a RL agent trained with proximal policy optimization (PPO) (Schulman et al., 2017), reflecting the common practice 

of using RL to train AV policies.

The IDM is a widely used car-following model that calculates the acceleration 𝑎 of the ego vehicle as 

𝑎 = 𝑐1

[

1 −
(

𝑣
𝑐2

)𝑐3
−
(

𝑠 (𝑣, 𝛥𝑣)
𝛥𝑥 − 𝑐4

)2
]

, (24)

where 
𝑠 (𝑣, 𝛥𝑣) = 𝑐5 + 𝑐6𝑣 +

𝑣𝛥𝑣
2
√

𝑐1𝑐7
. (25)

1 Link to source code: https://github.com/michigan-traffic-lab/Naturalistic-and-Adversarial-Driving-Environment.
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Fig. 4. Illustrations of (a) the four phases of overtaking scenarios and (b) the passing phase (Phase II). In overtaking scenarios, the AV overtakes both BV and 
LV. While AV is engaged in passing, BV may overtake LV.

Here, 𝑐1,… , 𝑐7 are constant parameters, 𝑣 is the ego vehicle’s velocity, 𝛥𝑣 is the velocity difference with the leading vehicle, and 𝛥𝑥
is the distance to the leading vehicle. For AV-I, the constants are set to 𝑐1 = 2.5, 𝑐2 = 18, 𝑐3 = 4, 𝑐4 = 4, 𝑐5 = 2, 𝑐6 = 1, and 𝑐7 = 3 (Ro 
et al., 2017). For AV-II, the constants are 𝑐1 = 5.948, 𝑐2 = 28.31, 𝑐3 = 16.79, 𝑐4 = 4.5, 𝑐5 = 1.42, 𝑐6 = 1.72, and 𝑐7 = 5.961 (Sangster 
et al., 2013). 

We use three archetypal SMs that capture a spectrum of driving behaviors:

(1) SM-I: the IDM (identical to AV-I), representing a neutral driving style;
(2) SM-II: the full velocity difference model (FVDM) (Jiang et al., 2001) with 𝑎min = −1 m∕s2, representing an aggressive driving 

style;
(3) SM-III: the FVDM with 𝑎min = −6 m∕s2, representing a conservative driving style.

The FVDM computes the acceleration 𝑎 of the ego vehicle as 
𝑎 = 𝑘1[𝑘2 + 𝑘3 tanh(𝑘4(𝛥𝑥 − 𝑘5) − 𝑘6) − 𝑣]. (26)

where 𝑘1 = 0.85, 𝑘2 = 6.75, 𝑘3 = 7.91, 𝑘4 = 0.13, 𝑘5 = 5 and 𝑘6 = 1.57 are constant parameters (Ro et al., 2017). The motivation for 
selecting these SMs is that most AV driving behaviors can be approximated as a weighted combination of neutral, aggressive, and 
conservative styles. By optimizing the combination coefficients of these SMs, we can construct a more efficient testing policy. All 
experiments are conducted using 50 threads on a computer equipped with an Intel® Xeon® Gold 5218R CPU, an NVIDIA® GeForce 
RTX™ 3090 GPU, and 256 GB RAM. 

5.2. Testing and evaluation results in overtaking scenarios

In this subsection, we analyze the testing and evaluation results of NDE, NADE and adaptive testing in overtaking scenarios. 
As illustrated in Fig.  4, we focus on the passing phase of overtaking scenarios, where a slower-moving lead vehicle (LV) travels 
ahead of the background vehicle (BV), and the AV is attempting to overtake both BV and LV. During this process, BV may also 
attempt to overtake LV, which could lead to a rear-end crash between AV and BV. The state of the overtaking scenario is defined 
as 𝒔 ∶= [𝑣BV, 𝑅1, �̇�1, 𝑅2, �̇�2]⊤, where 𝑅1 ∶= 𝑥LV − 𝑥BV, �̇�1 ∶= 𝑣LV − 𝑣BV, 𝑅2 ∶= 𝑥BV − 𝑥AV, and �̇�2 ∶= 𝑣BV − 𝑣AV. The action is defined 
as the accelerations of LV and BV, 𝒂 ∶= [𝑎LV, 𝑎BV]⊤. Here, 𝑥, 𝑣 and 𝑎 refer to the longitudinal position, velocity, and acceleration, 
respectively, with the subscripts corresponding to each specific vehicle. The simulation runs for a maximum of 20 s with a time 
resolution of 0.1 s. Typically, overtaking scenarios involve more than 1,400 dimensions (201 time steps, each with 5 state variables 
and 2 action variables), presenting the high-dimensionality challenge.

To enhance the robustness of crash rate estimation in NADE, we use three maneuver challenges, 𝑄1, 𝑄2, and 𝑄3, pre-trained 
with SM-I, SM-II, and SM-III, respectively, with equal combination coefficients to establish the importance function. Specifically, the 
importance function is given by Eqs. (6) and (7) with (𝑄 +𝑄 +𝑄 )∕3 in place of 𝑄. Fig.  5 displays the crash rate estimations and 
1 2 3
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Fig. 5. The crash rate estimations for (a) AV-I, (b) AV-II, and (c) AV-III in NDE and NADE, and corresponding RHWs for (d) AV-I, (e) AV-II, and (f) AV-III in 
overtaking scenarios.

Fig. 6. The (a) MSE on the training dataset, (b) MSE on the testing dataset and (c) MSE on safety-critical states throughout the NeuDyM training process in 
overtaking scenarios. The black curves represent the MSEs from the ordinary learning method, which uses all dynamics data, while the red curves correspond 
to the MSEs from our method that learns with only safety-critical dynamics data.

the corresponding RHWs for AV-I, AV-II, and AV-III in NDE and NADE. It can be seen that, across all three AVs, NADE converges 
to the same crash rate estimate as NDE, while requiring far fewer tests to reach the 0.3 RHW threshold. Although using multiple 
pre-trained maneuver challenges with average combination coefficients can enhance the evaluation robustness of NADE, it may 
reduce evaluation efficiency since such a configuration is not tailored for any specific AV under test.

To tackle this challenge, we continuously optimize the importance functions through the adaptive testing process. The number of 
tests is set to 𝑛(𝑘) = 105 for each update step 𝑘 = 1, 2,… . The NeuDyM is implemented as a multilayer perceptron (MLP) with three 
hidden layers, each containing 256 neurons. We employ the Adam optimizer and the mean squared error (MSE) loss function, using 
the default hyperparameters provided in PyTorch 1.13.1 (Paszke et al., 2019), which are widely adopted in practice. Fig.  6 illustrates 
the MSEs in the NeuDyM training process. While the MSEs for both the training and testing datasets show a downward trend, only 
our learning method manages to reduce the MSE in safety-critical states, whereas the ordinary learning method fails to do so, with its 
MSE actually increasing. Based on the learned NeuDyM policies, the maneuver challenges are then learned using dense reinforcement 
learning, and the combination coefficients are optimized accordingly. Fig.  7(a)–(c) reveal that the combination coefficients are 
13 
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Fig. 7. The combination coefficients optimized during adaptive testing for (a) AV-I, (b) AV-II, and (c) AV-III in overtaking scenarios.

Fig. 8. The crash rate estimations for (a) AV-I, (b) AV-II and (c) AV-III of NADE and adaptive testing, RHW of crash rate estimations for (d) AV-I, (e) AV-II 
and (f) AV-III, and frequency distributions of bootstrapped required number of tests for (g) AV-I, (h) AV-II and (i) AV-III in overtaking scenarios.

effectively optimized. Notably, at 107 tests, the optimized coefficients for AV-I, AV-II, and AV-III are 𝜶AV-I = [0.94, 0.03, 0.03]⊤ (with 
the ground truth 𝜶∗

AV-I = [1, 0, 0]⊤), 𝜶AV-II = [0.82, 0.17, 0.01]⊤, and 𝜶AV-III = [0.64, 0.03, 0.33]⊤, respectively. As the combination 
coefficients are optimized, the importance functions are updated, and the testing results obtained from these importance functions 
are aggregated through adaptive importance sampling.

To evaluate the performance of the adaptive testing method, we compare its results with those of NADE, as illustrated in Fig.  8. 
Fig.  8(a)–(c) show that adaptive testing produces the same crash rate estimates as NADE for all three AVs. However, as seen in Fig. 
14 
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Table 3
Average required number of tests and average acceleration ratios for AV-I, AV-II and AV-III in 
overtaking scenarios.
 Methods AV-I (AAR) AV-II (AAR) AV-III (AAR)  
 NDE 1.32 × 108 7.20 × 107 1.59 × 108  
 NADE 5.11 × 106 (26) 2.09 × 106 (34) 5.63 × 106 (28) 
 Adaptive testing 2.75 × 106 (48) 1.49 × 106 (48) 3.68 × 106 (43) 

Fig. 9. Illustration of the unprotected left-turn scenarios.

8(d)–(f), adaptive testing requires fewer tests than NADE to reach the 0.3 RHW threshold. To mitigate experimental stochasticity, 
we bootstrap the testing results by shuffling them 100 times. The frequency distributions of the required number of tests are shown 
in Fig.  8(g)–(i), respectively. Table  3 presents the average required number of tests and the average acceleration ratios (AARs) 
for NDE, NADE, and adaptive testing across the three AVs, where AARs (given in parentheses) represent the ratio of the average 
number of tests required by NADE and adaptive testing compared to NDE. To evaluate the computational overhead of the adaptive 
testing method, we measure the average wall-clock time (AWT) needed by our approach to reach the required number of tests. 
This measurement excludes the time spent on the actual testing process, focusing solely on the overhead introduced by the adaptive 
mechanism. The resulting AWTs for AV-I, AV-II, and AV-III are 585.60 s, 429.88 s, and 1216.31 s, respectively. Compared with NADE, 
adaptive testing reduces the required number of tests by 46.17%, 29.01%, and 34.67% for AV-I, AV-II, and AV-III, respectively, 
demonstrating its significant improvement in evaluation efficiency while maintaining robustness for diverse AVs.

5.3. Testing and evaluation results in unprotected left-turn scenarios

In this subsection, we present the testing and evaluation results of NDE, NADE, and adaptive testing in unprotected left-turn 
scenarios. As illustrated in Fig.  9, these scenarios involve the BV attempting a left turn while an oncoming AV approaches from 
the opposite direction, potentially leading to a crash within the intersection area. The state of the unprotected left-turn scenario is 
defined as 𝒔 ∶= [𝑣BV, 𝑅, �̇�]⊤, where 𝑅 ∶= 𝑥AV − 𝑥BV represents the relative position between the AV and BV, and �̇� ∶= 𝑣AV − 𝑣BV
denotes their relative speed. The action space consists of two discrete maneuvers available to the BV: wait (𝑎 = 0) or turn left (𝑎 = 1), 
i.e., 𝑎 ∈ {0, 1}. To model the BV’s decision-making process, we adopt the logit gap-acceptance model proposed by Madanat et al. 
(1994). Specifically, the probability of accepting a time gap 𝛥𝑡 ∶= 𝑅∕�̇� is given by 

P(Accept 𝛥𝑡) = 1
1 + exp(𝑐1 − 𝑐2𝛥𝑡)

, (27)

where 𝑐1 = 5.212 and 𝑐2 = 0.89934 are constant parameters calibrated in Madanat et al. (1994). Each simulation runs for a maximum 
of 10 s with a time resolution of 0.1 s. Due to the temporal resolution and the state–action representation, unprotected left-turn 
scenarios typically involve more than 400 dimensions (101 time steps with 3 state variables and 1 action per step), posing a 
significant high-dimensionality challenge. 

To assess the effectiveness of the adaptive testing method in unprotected left-turn scenarios, we compare its performance with 
that of NDE and NADE. Fig.  10 presents the crash rate estimations and the corresponding RHWs for AV-I, AV-II, and AV-III under both 
NDE and NADE. For all three AVs, NADE achieves the same crash rate estimates as NDE but with significantly fewer tests needed to 
reach the 0.3 RHW threshold. Furthermore, as illustrated in Fig.  11(a)–(c), the adaptive testing yields crash rate estimates identical 
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Fig. 10. The crash rate estimations for (a) AV-I, (b) AV-II, and (c) AV-III in NDE and NADE, and corresponding RHWs for (d) AV-I, (e) AV-II, and (f) AV-III in 
unprotected left-turn scenarios.

Table 4
Average required number of tests and average acceleration ratios for AV-I, AV-II and AV-III in 
unprotected left-turn scenarios.
 Methods AV-I (AAR) AV-II (AAR) AV-III (AAR)  
 NDE 4.41 × 106 1.82 × 106 2.27 × 106  
 NADE 6.22 × 103 (709) 2.14 × 103 (8479) 8.36 × 103 (2712) 
 Adaptive testing 9.20 × 102 (4792) 8.73 × 102 (20821) 4.22 × 103 (5367) 

to those of NADE across all three AVs. However, Fig.  11(d)–(f) indicate that adaptive testing achieves the 0.3 RHW threshold with 
fewer test cases than NADE. The distributions of the required number of tests are illustrated in Fig.  11(g)–(i). Table  4 summarizes 
the average required number of tests and the average acceleration ratios for NDE, NADE, and adaptive testing across the three 
AVs. The AWTs needed to reach the average required number of tests—excluding the testing process itself—for AV-I, AV-II, and 
AV-III are 37.18 s, 42.23 s, and 166.24 s, respectively. Compared to NADE, adaptive testing reduces the number of required tests by 
85.21%, 59.28%, and 49.48% for AV-I, AV-II, and AV-III, respectively, demonstrating its substantial gains in evaluation efficiency 
while preserving robustness across different AVs. 

6. Conclusion

This paper proposes an adaptive testing framework that continuously optimizes importance functions during the large-scale 
testing process—a stage largely overlooked by prior work. Our method centers on learning NeuDyM policies from exclusively 
safety-critical dynamics data and then applying dense reinforcement learning to optimize maneuver challenges. To further enhance 
robustness and generalizability, we combine multiple pre-trained maneuver challenges and optimize their combination coefficients. 
We also employ adaptive importance sampling techniques to accurately aggregate testing results across varying importance 
functions. This work makes three primary contributions: (i) it addresses a critical gap in existing adaptive testing methods by 
focusing on large-scale testing, (ii) it introduces a novel integration of NeuDyM learning and dense reinforcement learning to 
overcome the curse of rarity, and (iii) it improves evaluation efficiency and accuracy through adaptive importance sampling and 
testing policy mixture optimization. Extensive experiments in overtaking and unprotected left-turn scenarios demonstrate that our 
method significantly outperforms baseline methods, including NDE and NADE, in both evaluation accuracy and sample efficiency. 
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Fig. 11. The crash rate estimations for (a) AV-I, (b) AV-II and (c) AV-III of NADE and adaptive testing, RHW of crash rate estimations for (d) AV-I, (e) AV-II 
and (f) AV-III, and frequency distributions of bootstrapped required number of tests for (g) AV-I, (h) AV-II and (i) AV-III in unprotected left-turn scenarios.

Future work will explore extending the framework to driving environments with continuous state and action spaces and integrating 
adaptive testing across all three stages (pre-testing, large-scale testing, and performance evaluation). Moreover, as all experiments 
in this study are conducted in simulation for practicality, we plan to apply our method to real-world AV testing in future research.
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