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Highlights

What are the main findings?
• This study introduces a novel dualistic definition of learnability for Unmanned Ground

Vehicles (UGVs), clearly distinguishing between Learning Internalization Capability
(LIC) and Learning Generalization Capability (LGC), and focuses on dynamically
quantifying LIC.

• A black-box evaluation framework based on time series analysis is proposed, which
employs a sliding window-based slope-standard deviation collaborative analysis tech-
nique to objectively segment the learning process and extract five core metrics for
comprehensive LIC characterization.

What are the implications of the main findings?
• The framework provides a standardized, quantitative tool for the intelligent selection

of UGVs, the iterative optimization of algorithms, and the design of training strategies,
moving beyond static performance snapshots.

• It demonstrates superior discriminative power in revealing the long-term learning
potential of algorithms in complex scenarios, offering critical decision-support where
traditional static evaluations would fail.

Abstract

Aiming to address the core issue that the current intelligence evaluation for Unmanned
Ground Vehicles (UGVs) overly rely on static performance metrics and lack dynamic
quantitative characterization of learning internalization capability (LIC), this study pro-
poses a dynamic evaluation framework based on time series analysis. The framework
begins by constructing a multidimensional test scenario parameter system and collecting
externally observable performance sequence data. It then introduces a sliding window-
based slope-standard deviation collaborative analysis technique to achieve unsupervised
division of learning phases, from which five core evaluation metrics are extracted to com-
prehensively quantify the multidimensional dynamic characteristics of LIC in terms of
efficiency, stability, and overall effectiveness. Simulation experiments were carried out
using UGVs equipped with three types of path-planning algorithms in low-, medium-, and
high-difficulty scenarios. Results demonstrate that the proposed algorithm can effectively
distinguish multi-dimensional differences in LIC among different UGVs, exhibiting strong
discriminative power and interpretability. This study provides a standardized evaluation

Drones 2026, 10, 44 https://doi.org/10.3390/drones10010044

https://crossmark.crossref.org/dialog?doi=10.3390/drones10010044&domain=pdf&date_stamp=2026-01-08
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0002-5152-507X
https://orcid.org/0000-0001-9798-7347
https://orcid.org/0000-0002-2147-1464
https://orcid.org/0009-0006-1021-8478
https://doi.org/10.3390/drones10010044


Drones 2026, 10, 44 2 of 23

tool for UGV intelligent selection, algorithm iteration optimization, and training strategy
design, and offering significant reference value for the evaluation of the learnability of
autonomous driving systems.

Keywords: learning internalization capability (LIC); Unmanned Ground Vehicles (UGVs);
dynamic evaluation; time series analysis; learnability

1. Introduction
Unmanned Ground Vehicles (UGVs), as a critical branch of intelligent equipment, are

now widely deployed in various sectors such as logistics, urban inspection, environmental
monitoring, and operations in hazardous environments [1–3]. In these unstructured set-
tings, the task performance of UGVs no longer depends solely on hardware capabilities or
the static suitability of pre-defined algorithms. Instead, it increasingly relies on the system’s
learnability [4–8], which is its capacity to continuously optimize decisions through ongoing
learning and convert experiential knowledge into long-term performance gains [9–11].
Consequently, objectively quantifying the learnability of UGVs is not only a core metric
for evaluating their intelligence but also a key enabler for advancing UGVs from specific
scenario adaptation towards general task adaptation [12].

AI evaluation research has been conducted for many years, leading to the development
of various technical frameworks [13–19]. Early mainstream evaluation methods [20], often
remained at the qualitative level, using classification to distinguish intelligence levels.
However, these approaches are inherently subjective and lack standardized quantitative
criteria. Recent studies predominantly adopt a task-oriented evaluation paradigm [11],
such as testing on specific benchmarks or competitive events. A key limitation of this
paradigm is its task specificity. UGVs can achieve high scores via specialized training
using reinforcement learning(RL), making the results highly context-limited. In response,
capability-oriented evaluation models are gradually gaining attention. Ref. [21] proposed
an ‘Environmental Adaptability–Task Adaptability–Autonomy’ framework, employing
metrics like task completion rate and equipment wear to quantify the comprehensive
effectiveness of UGVs. Ref. [22] systematized five categories of evaluation indicators within
the STCER-H framework. Ref. [23] constructed an evaluation system covering multiple
dimensions, including perception, decision-making, and behavioral strategies. Ref. [24]
used instantaneous performance metrics, such as target recognition accuracy and decision-
making response speed in dynamic scenes, as core indicators. Ref. [25] proposed a ‘Robust
Training–Multi-dimensional Quantification’ approach (the RTCE framework) that was
limited to ‘safety performance.’ However, these studies primarily focus on the statistical
results of instantaneous performance [26]. Learnability has not been established as a
core evaluation dimension [27]. Consequently, intelligence evaluation remains superficial,
confined mainly to assessing functional implementation. While platforms for physical
robotic testing, such as the remote multi-robot lab [28], are invaluable for final validation, a
standardized methodology for quantitatively characterizing the learning process during
development is still lacking. Therefore, research specifically targeting the learnability
evaluation of UGVs is particularly necessary.

To address this inherent gap in existing evaluation systems, this paper defines learn-
ability as a core evaluation dimension for UGVs. Learnability, however, is not monolithic.
To evaluate it meaningfully, we propose a dualistic framework that distinguishes between
two complementary yet distinct facets: Learning Internalization Capability (LIC) and Learn-
ing Generalization Capability (LGC). LIC refers to a system’s ability to absorb and optimize
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experiential knowledge within a fixed task and environment, translating it into sustained,
long-term performance gains. For example, consider a UGV performing repetitive sorting
tasks in a static warehouse. Over multiple trials, a high-LIC UGV gradually internalizes
experience to optimize routing strategies, yielding measurable, consistent improvements in
completion time and success rate in the same static setting. This progression from initial
performance to a stable, more efficient state epitomizes the consolidation of learning into
durable capability—the core of LIC. In contrast, LGC denotes a system’s ability to transfer
and adapt learned knowledge to novel, unseen tasks or environments, transcending prior
experience boundaries. It reflects the breadth and flexibility of learning.

While LIC and LGC together define a system’s learnability, they differ fundamentally
in evaluation objectives, methodologies, and application scenarios. This study focuses
specifically on the dynamic evaluation of LIC, as it directly dictates a UGV’s potential for
rapid performance improvement under known operational conditions. Quantifying LIC
requires analyzing the temporal evolution inherent in the performance sequence Y, a gap
that our framework addresses. Though equally critical, LGC poses distinct evaluation
challenges and is reserved for independent future research.

Previous methods for evaluating autonomous systems have included both system-
level evaluations (e.g., expert qualitative [19,20], task-oriented [11] and capability-
oriented [21,24]) and learnability analyses (e.g., learning curve fitting [29], RL convergence
analysis [30], and adaptive performance metrics [31]), which typically focus on static per-
formance or internal algorithm states. In contrast, we adopt an independent, reproducible
third-party perspective and propose a fundamentally different, black-box dynamic evalua-
tion framework based on time-series analysis. Our approach does not rely on any internal
algorithm details; instead, it quantifies LIC solely through analysis of externally observable
performance sequences. The main contributions are:

(i) Learnability is clearly defined for the first time through the dual dimensions of
LIC and LGC, with a focus on quantifying the former. This provides a new theoretical
perspective for evaluating the intelligence level of autonomous systems.

(ii) A multidimensional test scenario parameter system for dynamic evaluation is
constructed. A sliding window-based slope-standard deviation collaborative analysis
technique is proposed to achieve objective division of learning phases, overcoming the
subjectivity of traditional experience-based threshold methods.

(iii) A set of core metrics is designed to evaluate LIC, enabling the dynamic characteri-
zation of learning efficiency, stability, and comprehensive effectiveness.

(iv) Simulation experiments are conducted to validate the effectiveness and discrimi-
native power of the proposed method in comparing the LIC of different algorithms across
scenarios. This provides scientific decision-making support for UGV algorithm selection
and training strategy optimization.

Building on this conceptual foundation, we posit that the LIC of a UGV can be effec-
tively and objectively quantified through a black-box analysis of the dynamic evolutionary
patterns within its externally observable performance sequence Y. This hypothesis forms
the cornerstone of the evaluation framework proposed in this study.

The remainder of this paper is organized as follows: Section 2 analyzes the core chal-
lenges in evaluating the LIC of UGVs. Section 3 details the proposed dynamic evaluation
framework. Section 4 designs and conducts simulation experiments. Section 5 analyzes the
experimental results to validate the method’s effectiveness. Section 6 concludes the paper
and outlines future research directions.
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2. Problem Description
Although static performance evaluation systems are relatively well-established, quan-

tifying the LIC of UGVs remains a core challenge that has not been fully explored. To
precisely characterize this dynamic process and analyze its associated evaluation challenges,
this section first establishes a formal mathematical model of the learning internalization
process. This clarifies the fundamental distinction between dynamic and static evaluation,
thereby systematically introducing the core problems faced in this evaluation.

2.1. Formal Modeling

The learning internalization process of an unmanned system is essentially a dynamic
cycle of continuous interaction between its agent and the task environment, optimizing its
behavioral policy based on historical experience. This process can be decomposed into four
phases, as illustrated in Figure 1.

Figure 1. Schematic of the learning internalization process in a UGV.

(i) Experience Generation: In a specific test scenario E , the system executes the task
for the t-th time, generating an experience trajectory τt = (s0, a0, s1, a1, . . . ,sT), where s ∈ S
represents the environmental state and a ∈ A represents the system action. As indicated by
the red arrow in Figure 1, each cycle produces one experience trajectory τt.

(ii) Policy Update: The system’s internal learning mechanism utilizes the accumulated
experience data Dt = {τ1, τ2, . . . , τt} to update its decision-making policy, i.e., πt+1 ←
Learn(πt, Dt). This process encapsulates the black-box operations internal to the system,
such as parameter optimization and model adjustment, represented by the purple arrow
in Figure 1.

(iii) Performance Manifestation: The updated policy πt+1 is executed in the environ-
ment. Its performance is quantified by one or more observable performance metrics yt+1,
i.e., yt+1 = P(τt+1|πt+1, E). Here, P is a performance mapping function that translates the
trajectory into a scalar performance value (e.g., task success rate, efficiency score), as shown
in the yellow area of Figure 1.

(iv) Ability Internalization: As the iteration count t increases, the system’s performance
sequence Y = {y1, y2, . . . , yN} exhibits certain evolutionary patterns. The strength of LIC
is precisely reflected in the dynamic statistical characteristics and convergence properties
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of this performance sequence Y. As indicated by the red dashed arrow in Figure 1, LIC
gradually forms as this cyclic process evolves.

In contrast, traditional static evaluation methods treat the system as a static mapping:

y = P(τ | π, E) (1)

where the evaluation function H typically performs cross-sectional statistics
(e.g., mean, maximum) on the outputs of multiple independent tests, expressed as
StaticScore = H(y1, y2, . . . , yN). This method focuses solely on the system’s performance at
a specific point or the statistical outcome of multiple tests, completely ignoring the temporal
correlation and dynamic evolution patterns inherent in the performance output sequence
{yt}. Consequently, it cannot determine whether the system’s performance improves with
accumulated experience.

In opposition, the dynamic evaluation central to this paper focuses on quantifying the
system’s ability to improve performance, as revealed by the sequence Y = {y1, y2, . . . , yN}.
Therefore, we define the LIC evaluation problem as follows: construct an evaluation
function F that takes the observable performance sequence Y from a fixed scenario
E as input. For LIC to be deemed present and quantifiable, Y must satisfy two core
statistical conditions:

(i) Significant Positive Trend: The sequence Y must exhibit a statistically significant
positive trend.

(ii) Stationary Convergence: The sequence must eventually reach a stationary conver-
gence phase, where the fluctuations are bounded and exhibit no systematic drift.

The strength of LIC is then quantified by F through metrics that capture the efficiency
of the ascent and the stability of the convergence. Crucially, this definition is falsifiable: if Y
resembles a random walk, shows no significant trend, or degrades, then by definition, LIC
is considered absent or negligible for the tested system in scenario E . Thus:

LIC = F(Y) = F({y1, y2, . . . , yN}) (2)

where F operates under the premise that the above conditions hold.

2.2. Core Challenges

Based on the formal definition above, current evaluation systems face three core
challenges when addressing the dynamic attribute of LIC [32]:

(i) Lack of Quantification for Dynamic Evolution. Existing evaluations predominantly
focus on cross-sectional statistics of system performance, such as the final performance
yN or the average performance ȳ. These metrics fail to capture the temporal correlation
and dynamic trends within the performance sequence Y. A system with high LIC should
exhibit a rapid initial climb in its Y sequence, followed by stable convergence. However, the
primary challenge is how to objectively and unsupervisedly identify the learning phases
from a potentially noisy Y sequence and quantify the characteristics of each phase. This
demands that the evaluation function F can effectively extract the dynamic patterns of the
sequence, a requirement that static aggregation functions like StaticScore = H(y1, y2, . . . , yN)

cannot be fulfilled.
(ii) Universality Requirement for Black-Box Evaluation. As shown in the formula

πt+1 ← Learn(πt, Dt), the system’s internal learning mechanism Learn(·) is typically
invisible to a third-party evaluator. Therefore, the evaluation function F must strictly adhere
to a black-box paradigm [33]. It should make inferences based solely on the externally
observable Y, without any assumptions about the internal principles of Learn(·). That is,
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LIC = F(Y), and F must be independent of the specific implementation of Learn(·). This
necessitates that F possesses universality across heterogeneous algorithm architectures.

(iii) Gap in the Evaluation Metric System. The dynamic characteristics of the perfor-
mance sequence Y are multidimensional. Currently, there is a lack of a systematic indicator
vector I⃗ = (IAl, ICV, IMP, IISR, IAUC) to collaboratively characterize features such as learning
efficiency, convergence stability and overall learning effectiveness and to aggregate I⃗ into
an overall evaluation of LIC (LIC = Φ(⃗I)).

2.3. Critical Comparison with Existing Evaluation Methods

The challenges discussed in Section 2.2 reveal the inadequacy of existing methods
for evaluating LIC. To clarify the position of our solution, we compare three methods:
Expert Qualitative Evaluation, Task-Oriented or Capability-oriented Evaluation, and our
Dynamic, Black-box LIC Evaluation. The comparison across key dimensions is summarized
in Table 1, which highlights how our framework addresses the identified gaps.

Table 1. Comparison of evaluation methods for UGVs.

Dimension Expert Qualitative
Evaluation

Task-Oriented or
Capability-Oriented
Evaluation

Dynamic, Black-Box
LIC Evaluation

Evaluation Object Functional features and
performance parameters.

Task or capability
success metrics.

Temporal evolution of the
performance sequence.

Core Methodology Rating against defined
autonomy levels.

Optimization and testing
against fixed tasks
or capabilities.

Time-series analysis of
learning phases.

Primary Output An intelligence or
autonomy level. A ranking or score. Multi-dimensional metrics.

Capability for
Assessing LIC

Fails to capture
dynamic properties.

Limited, but fails to
capture performance
trends over time.

Directly quantifies learning
efficiency, stability
and effectiveness.

Algorithm Dependency Dependent on known
performance parameters.

Often encourages
algorithm-specific
optimization.

Independent (Black-box).

To further elucidate the methodological distinction of our framework, we provide a
focused comparison with three related technical concepts: learning curve fitting, RL conver-
gence analysis, and adaptive performance metrics. While these approaches also deal with
learning or performance changes, their objectives and mechanisms differ fundamentally
from our LIC evaluation.

(i) Learning Curve Fitting fits a global trend to the entire performance sequence to
extract a single learning rate parameter. In contrast, our method performs non-parametric
segmentation of the sequence into local phases (Ascent, Convergence) and extracts a
multi-dimensional feature vector to characterize phase-specific dynamics.

(ii) RL Convergence Analysis is a white-box technique that examines the stability
of internal algorithm states. Our framework, however, is a black-box tool that assesses
convergence solely through the stability of the external performance output, using metrics.

(iii) Adaptive Performance Metrics measure a system’s robustness or speed in re-
sponding to environmental changes. Our LIC evaluation, in contrast, quantifies a sys-
tem’s ability to optimize and internalize performance through experience within a fixed,
unchanging scenario.
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In summary, the key to this research lies in constructing an evaluation framework
F that can automatically and robustly extract the dynamic evolutionary features from
the performance sequence Y, and output a set of standardized, interpretable quantitative
indicator vectors I⃗ and a final evaluation score LIC. The following sections will focus on
this core problem, detailing the method design and experimental validation.

3. Methodology
To address the challenges in evaluating LIC outlined in Section 2, this study draws

on the learning curve theory [34] for describing the dynamic evolution of learning pro-
cesses. We propose a dynamic evaluation method based on time series analysis. This
method treats the learning internalization process of an intelligent system as a dynamic
system evolving over time. By analyzing its externally observable time-series performance
data, it establishes a black-box evaluation framework that is independent of the system’s
internal implementation.

3.1. Framework

This study constructs a systematic evaluation framework, as shown in Figure 2. This
framework strictly adheres to the black-box evaluation paradigm, relying solely on the
system’s externally observable sequential behavior data, thereby ensuring the objectivity of
the evaluation process and the universality of the results.

Figure 2. Framework for evaluating LIC.

(i) Test Scenario Modeling: A multidimensional parameter space is constructed to
provide a controlled environment for stimulating and observing learning behaviors.

(ii) Time Series Data Collection and Preprocessing: Serialized tests are conducted
under predefined scenarios to collect the raw performance sequence Y = {y1, y2, . . . , yN},
followed by data cleaning and standardization.

(iii) Dynamic Division of Learning phases: Based on a sliding window-based
slope-standard deviation collaborative analysis technique, the time-series performance
sequence is analyzed to identify and objectively partition it into Ascent Phase and
Convergence Phase.
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(iv) Quantitative Evaluation of Learning Characteristics: Multi-dimensional charac-
teristic metrics are extracted from the partitioned learning phases to form an evaluation
vector I⃗, achieving a comprehensive quantitative characterization of the LIC.

3.2. Test Scenario Modeling

To stimulate and observe learning behaviors, we first construct a multidimensional
parameter space for precise environment modeling:

Θ = (Θe, Θo, Θs) (3)

where Θe represents environmental parameters, Θo represents task object parameters, and
Θs represents the system’s own parameters.

(1) Environmental Parameters (Θe)
These describe the external physical conditions of the system’s operation, including

illumination intensity, weather conditions, and noise level, which affect the input quality of
the perception module.

(2) Task Object Parameters (Θo)
These define the characteristics of the target entities for task execution,

described using feature vectors or parameterized trajectories. For example, a regu-
lar object can be represented as v⃗ = (l, w, h), and a dynamic obstacle trajectory as
p(t) =

(
x0+vxt + 1

2 axt2, y0 + vyt + 1
2 ayt2

)
.

(3) System’s Own Parameters (Θs)
These reflect the system’s hardware configuration and algorithmic characteris-

tics, including computational capability, sensor accuracy, exploration parameters, and
learning rate.

A unified mathematical model for test scenarios is established:

Γ = {(p1, p2, . . . , pk)|pi ∈ Di, i = 1, 2, . . . , k} (4)

where pi is the i-th variable parameter and Di is its domain. Three types of test scenarios
are generated through parameter configuration:

Specific Configuration Scenario: All parameters are fixed, Γ = {(c1, c2, . . . , ck)}.
Single-Variable Analysis Scenario: A single parameter varies, Γ = {(p1, c2, . . . , ck)|

p1 ∈ D1}.
Multi-Variable Coupling Scenario: Multiple parameters change simultaneously,

Γ = {(p1, p2, . . . , pk)|pi ∈ Di}.

3.3. Time Series Data Collection and Preprocessing
3.3.1. Time Series Data Collection

For each test scenario Γ, we conduct N independent trials. We record the performance
indicator value yt for every successful task completion, where t denotes the sequence
number of successes. This establishes a quantitative mapping:

yt = f (Γ, t), f or t = 1, 2, . . . , Nsuccess (5)

where Nsuccess is the total number of successful tasks. The performance indicator Y can be
any extrinsic metric central to characterizing intelligence levels. This framework is general-
purpose, and the choice of Y is task-dependent. For instance, it can be task success rate,
completion time, or energy consumption for efficiency-related tasks; detection accuracy
for perception-related tasks; tracking error for control-related tasks; or a comprehensive
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intelligence score generated by expert weighting for overall assessment. The subsequent
analysis operates on the sequence Y regardless of its specific semantic meaning.

If a task fails (according to preset criteria such as timeout, target drop, or critical action
interruption), the failure event is recorded, and the total number of failures is denoted as
N f ailure. The failure rate will be used to quantify test scenario complexity and determine
the significance of the learning effect.

The total number of tests N is determined by either reaching a preset fixed upper
limit or by terminating when the performance fluctuation amplitude remains below a
threshold ϵ for M consecutive tests, in which case N corresponds to the actual number of
tests performed.

3.3.2. Data Preprocessing

(1) Outlier Filtering: A sliding window statistical method is used to identify and filter
outliers. If the indicator value yt from a test fall outside the range of 3 standard deviations
from the mean within the sliding window, it is removed:

|yt − µw| > 3σw (6)

The remaining N′ data points form a new sequence for subsequent analysis.
(2) Data Normalization: The Min–Max linear normalization method [35] is used to

map the processed data to the interval [0, 1].

ỹt =
yt −Ymin

Ymax −Ymin
for t = 1, 2, . . . , N′ (7)

where Ymin and Ymax denote the minimum and maximum values of the processed perfor-
mance sequence Y, respectively.

3.4. Evaluation Model

To fulfill the requirements for a robust, black-box evaluation of LIC as outlined
in Section 2.2, our evaluation model follows a structured workflow. First, a significance
test (Section 3.4.1) determines whether a meaningful learning effect exists. If confirmed,
the phase division algorithm (Section 3.4.2) objectively identifies the Ascent and Con-
vergence phases within the performance sequence Y. The key hyperparameters of this
algorithm (Section 3.4.3) are systematically analyzed and tuned to ensure robustness and
generalizability. Finally, the evaluation metrics (Section 3.4.4) are specifically selected to
translate the characteristics of these phases into a comprehensive assessment vector, I.
Consequently, metrics tailored for analyzing stationary time series, such as autocorrelation,
were excluded from our framework, as they are unsuitable for capturing the non-stationary
and continuously evolving nature of the learning process inherent to LIC assessment.

3.4.1. Significance Test

Let the task success rate and the mean intelligence evaluation value in the first m tests
be Sinitial and ȳinitial, respectively, and in the last m tests be Sfinal and ȳfinal, respectively
(where N is the total number of tests, and m ≤ N

2 ). The learning growth rate G is then:

G =
ȳfinal − ȳinitial

ȳinitial
(8)

Determining the significance of the learning effect requires simultaneously satisfying
the following two conditions:

Criterion 1: Sfinal − Sinitial ≥ θS, where θS is a preset task success rate threshold set
according to the test scenario difficulty.
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Criterion 2: G ≥ θG (where θG is a preset minimum effective growth rate threshold),
and the null hypothesis H0 : ȳinitial = ȳfinal is rejected using a two-independent-samples
t-test (significance level α = 0.05).

The learning effect is deemed significant only if both criteria are met; otherwise, it is
considered not significant.

3.4.2. Learning Phase Division

Based on the evolutionary characteristics of the performance sequence, the learning
process can be divided into two typical phases: the Ascent Phase, corresponding to the
algorithm exploration phase with rapid performance improvement but significant fluctua-
tions; and the Convergence Phase, corresponding to the mature optimization phase where
performance stabilizes and fluctuations diminish [36–39]. Traditional time series analysis
struggles to accurately distinguish random fluctuations from substantive progress during
the volatile Ascent Phase, easily leading to misidentification of phases.

To address this, this study adopts a reverse-order analysis strategy, analyzing back-
wards from the end of the sequence (Convergence Phase) towards the start (Ascent Phase),
as shown in Figure 3. This method starts from the less volatile region, allowing clearer
identification of performance state transition boundaries and effectively avoiding inter-
ference from the severe fluctuations in the Ascent Phase. The specific steps are as follows
(see Figure 4):

Figure 3. Schematic illustration of the learning phase division algorithm.

(1) Data Preparation: The learning curve consists of performance indicator values
for all successful task sequences, denoted as Y =

{
y1, y2, . . . , yN′s

}
, where N′s is the total

number of successful tasks.
(2) Reverse Order Processing: The original learning curve sequence Y is reversed to

obtain a new sequence Y′ =
{

y′N′s , y′N′s−1, . . . , y′1
}

. Subsequent analysis is performed on Y′.
(3) Sliding Window Definition: A sliding window of fixed size ω is defined. The

selection of ω requires a trade-off between sensitivity to local changes and robustness to
noise; it is typically set to 5–10% of the total number of tests.

(4) Intra-Window Statistic Calculation: For each valid starting position i in the reversed
sequence Y′, we extract a subsequence Y′i of ω consecutive points. This starting point i
must satisfy i ≤ N′s −ω + 1.
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Figure 4. Flowchart of the learning phase division process.

Slope Calculation: Perform linear regression on the subsequence Y′i to calculate its
slope ki. This slope quantifies the average trend of the performance indicator within
the window (in the reversed sequence, a negative slope typically indicates performance
improvement in the original sequence).

Standard Deviation Calculation: Calculate the standard deviation σi of the subse-
quence Y′i . This standard deviation quantifies the fluctuation of the performance indicator
around its mean within the window.

(5) Rate of Change Calculation: For adjacent windows i and i + 1, calculate the slope
change rate ∆ki and the standard deviation change rate ∆σi:

∆ki =
|ki+1 − ki|
|ki|

, ∆σi =
|σi+1 − σi|
|σi|

(9)

where i = 1, 2, ..., N′s −ω + 1.
(6) Comprehensive Score Calculation: Combine the slope change rate and standard

deviation change rate to calculate a comprehensive score:

si = −(∆ki + λ∆σi) (10)

The negative sign indicates the desire to find positions where the rate of change
decreases (a larger score indicates a gentler change). λ is a tuning coefficient that balances
the relative importance of the slope change rate and the standard deviation change rate.
This study considers them equally important, setting λ = 1.

(7) Transition Point Detection: Transition point between Ascent and Convergence
Phases: Find the position Ipoint1 in the score sequence

{
s1, s2, . . . , sN′s−ω+1

}
where its value

is greater than the subsequent h consecutive values (typically an empirical value h = 3
is used).

End point of Convergence Phase: Within the Convergence Phase, find the first position
Ipoint2 that satisfies the following condition:

|ki| < δk and σi < δσ
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where δk and δσ are preset thresholds for slope and standard deviation, indicating that the
performance has sufficiently stabilized.

(8) Phase Division: Map Ipoint1 and Ipoint2 back to their corresponding positions in the
original sequence Y. The transition point between the Ascent and Convergence Phases
is tpoint1 = N′s −

(
Ipoint1 + ω− 1

)
+ 1, and the end point of the Convergence Phase is

tpoint2 = N′s − (Ipoint2 + ω− 1) + 1. In the original sequence, t ≤ tpoint1 is the Ascent Phase,
and tpoint1 < t ≤ tpoint2 is the Convergence Phase.

The proposed phase division algorithm is specifically designed for the non-stationary,
evolving nature of learning curves. It differs in objective from classical statistical change-
point detection methods, such as PELT [40] or CUSUM [41]. Those methods are optimized
to detect abrupt shifts in the parameters (e.g., mean, variance) of otherwise stationary
processes. In contrast, our method targets the transition in the evolutionary pattern itself—
from a phase of volatile improvement (non-stationary trend) to one of stable convergence.
By tracking the simultaneous stabilization of ki and σi, our approach provides a more direct
and interpretable segmentation for learning process analysis.

The detailed justification for the selection of the hyperparameters (ω, λ, h, δk, δσ) used
in this algorithm, along with a systematic sensitivity analysis, is provided in Section 3.4.3.

3.4.3. Hyperparameter Sensitivity Analysis and Tuning

To ensure robustness and generalizability, the key hyperparameters were selected
as follows:

(i) The sliding window size ω was set to 20 (5% of the data length), which balanced
trend sensitivity and noise resilience. A general guideline is 5–10% of the sequence length.

(ii) The balance factor λ was set to 1 to weight trend change (∆ki) and stability change
(∆σi) equally, reflecting the dual focus of LIC on efficiency and stability. Evaluators may
adjust λ to emphasize speed (λ < 1) or stability (λ > 1).

(iii) The minimum window count h was set to 3 to reliably detect phase transitions in
our smoothed data. For noisier sequences, increasing h to 5 is recommended.

(iv) For the convergence thresholds δk and δσ, adaptive relative thresholds were
adopted: δk was set to 5% of the maximum absolute slope in the Ascent Phase, and δσ to
5% of the global standard deviation of the normalized sequence. These percentages can be
raised for noisier data to avoid premature convergence.

Overall, the algorithm shows strong robustness within these ranges, and the provided
values offer practical starting points for new datasets.

3.4.4. Evaluation Metrics

To systematically characterize the multi-dimensional dynamic characteristics of
LIC, this paper constructs an evaluation vector I⃗ = (IAl, ICV, IMP, IISR, IAUC) comprising
five dimensions. Specifically, IAI and IISR are designed to evaluate learning efficiency
and improvement magnitude, while ICV and IMP characterize convergence stability and
performance level, respectively. IAUC serves as a comprehensive metric of overall learning
effectiveness. This enables both horizontal comparison of multiple algorithms within the
same scenario and adaptability analysis of a single algorithm across multiple scenarios.
The specific metric definitions are as follows:

(1) Average Increment (IAI): This metric quantifies the learning speed during the
Ascent Phase. It is defined as the ratio of the total performance gain within the phase
to the number of training iterations, where a larger value indicates faster learning. IAI is
calculated as:

IAI =
ymax − ymin

|Yp|
(11)
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where Yp is the performance subsequence during the Ascent Phase, and ymax and ymin are
the maximum and minimum performance values within Yp, respectively.

(2) Stability Degree (ICV): This metric quantifies the fluctuation amplitude of the
algorithm’s output performance during the Convergence Phase. It is represented by the
coefficient of variation in the performance values within this phase, where a smaller value
indicates more stable performance. ICV is calculated as:

ICV =
σc

ȳc
(12)

where ȳc and σc are the mean and standard deviation of the performance values within the
Convergence Phase, respectively.

(3) Mean Performance (IMP): This metric characterizes the stable output level achieved
during the Convergence Phase, representing the algorithm’s average performance in its
mature phase. It is calculated as the arithmetic mean of all performance values within this
phase, where a larger value indicates superior stable performance. IMP is defined as:

IMP =
1
n

n

∑
t=1

yt (13)

where n is the number of performance observations in the Convergence Phase, and yt

denotes the performance value at the t-th observation.
(4) Increase in Success Rate (IISR): This global metric quantifies the overall improve-

ment in task success rate throughout the learning process. It is defined as the difference
in success rates between the first m and last m trials, where a larger value indicates more
substantial improvement. IISR is calculated as:

IISR = Sfinal − Sinitial (14)

where Sinitial and Sfinal denote the success rates during the initial and final phases of the
learning process, respectively.

(5) Area Under the Curve (IAUC): This global metric reflects the overall efficiency
and cumulative performance of the learning process. It is calculated as the area under
the learning curve, with a larger value indicating better cumulative learning effects and
higher learning efficiency. Using the trapezoidal rule for numerical integration, IAUC is
computed as:

IAUC =
N′−1

∑
t=1

yt + yt+1

2
(15)

where N′ is the total number of successful trials, and yt represents the performance value
at the t-th successful trial.

4. Numerical Experiment
This experiment systematically evaluates the LIC of path-planning algorithms using

three Unmanned Ground Vehicles (UGVs) as test subjects. To ensure comparability, the
three vehicles differ only in their path-planning algorithms, with all other configurations
being identical. Considering the high costs, low efficiency, and difficulty in replicating
scenarios associated with physical vehicle tests, a simulation-based approach was adopted.
All tests were performed on a platform with an Intel(R) Core(TM) i7-9750H CPU(Intel
Corporation, Santa Clara, CA, USA) @ 2.60 GHz.
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4.1. Test Scenario Construction

To create a representative and moderately complex testing environment, a
two-dimensional simulation scenario was designed, as shown in Figure 5. This scenario in-
corporates static and dynamic obstacles, narrow passages, and unstructured path elements.
Interferences from natural factors (e.g., lighting, weather) and road condition variations
were excluded to ensure result reproducibility [42,43]. This methodology is well-supported
by prior work in virtual robotic testing, such as the high-fidelity simulation environment
for autonomous vehicle testing [44], which demonstrates the efficacy of virtual platforms
for controlled and reproducible evaluation. The specific parameter settings are as follows:

(i) Terrain Parameters: The area was set as a 20 m × 20 m rectangle. The ground
friction coefficient was set to 0.8, and the influence of terrain relief on vehicle motion
was neglected.

(ii) Obstacle Configuration: Three static obstacles were placed, each with a radius
of ∗r ∗ (m), located at coordinates (15, 15), (8, 3), and (5, 5), respectively. One dynamic
obstacle was set to move reciprocally between (5, 10) and (15, 10) along the x-axis at a speed
of 1 m/s. Note that the dynamic obstacle model is intentionally simplistic to establish a
clear, reproducible baseline for initially validating the proposed evaluation framework. The
framework itself is agnostic to environmental complexity and can be applied to scenarios
with more sophisticated dynamics.

(iii) UGV Parameters: A differential drive model was used. The vehicle dimensions
were 1.0 m × 0.5 m, with a maximum acceleration of ±0.5 m/s2 and a maximum steering
angle of ±30◦. The minimum safe distance was set to 0.5 m.

(iv) Task Objective: The UGV starts from the origin (0, 0) and must safely navigate
around all obstacles to reach the target point (20, 20). The optimization objectives are to
minimize both travel time and path length.

Figure 5. Test scenario.

4.2. Experimental Strategy

The obstacle radius was chosen as the task object variable to define three test scenarios:
low difficulty (Γ1, R = 0.8 m), medium difficulty (Γ2, R = 1.6 m), and high difficulty
(Γ3, R = 2.0 m). In each scenario, 500 independent repeated trials were conducted for
each algorithm. During these trials, a total of eight intelligence evaluation metrics across
three categories—safety, efficiency, and stability—were fully recorded. The comprehensive
intelligence score for each test was calculated using the method described in [45].
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To overcome the challenge of directly quantifying learning performance in physical
tests, three types of path-planning algorithms with distinct performance characteristics
were selected as test objects to validate the evaluation method’s effectiveness.

(i) Rule-Driven Algorithm: This method relies on a manually designed evaluation
function for online optimization within the velocity space. It is characterized by strong
real-time response capabilities and obstacle avoidance robustness, represented here by the
Dynamic Window Approach (DWA) [46].

(ii) Probability Sampling Search-Based Algorithm: As a Monte Carlo sampling-based
search method, this algorithm is suitable for path finding in high-dimensional state spaces,
represented here by the Rapidly exploring Random Tree (RRT) [47].

(iii) Deep RL-Based, Offline Data-Driven Algorithm: This method optimizes policy
by maximizing cumulative reward and policy entropy, capable of learning end-to-end
planning strategies that combine high performance with good generalization capability,
represented here by the Soft Actor–Critic (SAC) [48]. For the SAC implementation, we
used the default hyperparameters from Ray RLlib 1.11.0. The learning rate for both the
policy and value networks was set to 3× 10−4, with a discount factor γ = 0.99. Target
networks were softly updated with τ = 0.005. We employed a replay buffer of size 500,000,
twin Q-networks, and automatic target entropy tuning. The agent was updated at every
timestep using a batch size of 256. Both the policy and Q-network architectures consisted
of two fully connected hidden layers with 256 units each and ReLU activation functions.

This selection of algorithms is deliberate, forming a capability spectrum for LIC
evaluation: DWA serves as a non-learning, rule-driven baseline; RRT represents stochastic
exploration without systematic policy improvement; and SAC is the learning-capable agent
whose internalization process is the primary target of our quantitative assessment.

5. Results
5.1. Low- and Medium-Difficulty Test Scenarios

(1) Qualitative Analysis
Path trajectories are direct external manifestations of UGV decision-making behavior.

To gain a preliminary qualitative understanding of their LIC, this section first compares
and analyzes the path trajectories of each UGV in Γ1 and Γ2, as shown in Figure 6.

Figure 6 reveals distinct behavioral patterns:
(i) UGV-1’s trajectory lines are highly coincident and almost indistinguishable. This

indicates that as a local reactive algorithm, its decisions rely entirely on instantaneous
sensor information. It lacks the ability to accumulate and utilize historical experience.

(ii) In contrast, UGV-2 shows significant trajectory divergence and randomness. This
reflects the extensive exploration behavior of its sampling-based planner. Although random
sampling can occasionally yield shorter paths, these sporadic improvements are stochastic
and non-directed. The algorithm does not construct internal models or transfer knowledge
from past successes, relying instead on random exploration rather than systematic self-
improvement. Thus, its performance variations stem primarily from its random sampling
nature rather than from systematic, experience-driven policy improvement.

(iii) UGV-3 clearly demonstrates a transition from exploration to optimization. Early
trajectories are dispersed, elongated, and collision-prone, whereas later ones converge
rapidly to a limited set of short and smooth paths. This marked improvement in trajectory
quality provides strong qualitative evidence of robust learning internalization capability
enabled by the SAC algorithm.

In summary, the trajectory comparison preliminarily reveals that UGV-1 employs a
relatively fixed strategy, UGV-2 a random exploration strategy, and UGV-3 demonstrates
a clear performance optimization trend. However, qualitative analysis is insufficient for
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precisely quantifying the efficiency and stability of the learning process, necessitating
further quantitative analysis.

Figure 6. Comparative path planning trajectories of each UGV under different test scenarios: (a,c,e) Γ1;
(b,d,f) Γ2.

(2) Quantitative Analysis
This section presents performance curves with the number of tests on the horizontal

axis and the normalized intelligence evaluation value on the vertical axis. The phase
transition points in learning were identified using the sliding window-based slope-standard
deviation collaborative analysis method described in Section 3.4.2.

The dynamic evolution features of the learning curves further confirm and refine the
conclusions from the trajectory analysis:

The learning curve for UGV-1 consistently fluctuates near a horizontal line. This
quantitatively confirms that its performance lacks an improving trend over time. Its
intelligence level is entirely predetermined by the initial algorithm parameters, indicating
an absence of LIC.

The learning curve for UGV-2 shows narrow fluctuations overall, without distinct
Ascent or Convergence Phases. This indicates that its random sampling behavior leads to
performance volatility, and the learning effect is not significant.

UGV-3’s learning curve clearly shows the typical two-phase pattern. In the Ascent
Phase (before tpoint1), performance rises rapidly with large fluctuations, indicating active
exploration. In the Convergence Phase (after tpoint1), performance stabilizes with minimal
fluctuation, showing that a stable policy has been learned. This clear dynamic evolution
pattern fully validates the superior LIC of UGV-3.

The contrasting patterns between UGV-2 and UGV-3 objectively separate stochastic
exploration from systematic learning internalization. UGV-2’s flat, noisy learning curves
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(Figure 7) are indicative of random exploration without performance consolidation. In
stark contrast, UGV-3’s distinct two-phase curves (Figure 7) demonstrate experience-driven
policy improvement and stabilization. Therefore, the proposed framework and its metrics
naturally discriminate between mere exploration and genuine internalization, addressing a
key challenge in evaluating learning algorithms.

Figure 7. Learning curves with sliding-window standard deviation bands for each UGV.

The proposed sliding-window-based analysis differs in objective from classic learning
curve fitting methods (e.g., exponential or power-law models). Those methods aim to
approximate the global trend of the entire sequence Y with a smooth parametric function.
In contrast, our method is designed for unsupervised segmentation; it identifies the local
transition point between learning phases by analyzing changes in the local statistics (ki and
σi). This approach is more suitable for the non-stationary, fluctuating sequences typical
of learning processes. To illustrate this process, Table 2 provides a segment of the raw
intermediate metrics (∆ki, ∆σi, and Si) generated by the algorithm for UGV-3 in Γ2.

Table 2. Sliding window analysis for phase division of UGV-3 in Γ2 (R = 1.6 m). Only a segment of
the data is shown for illustration.

Test Order Reversed Test Order ∆ki ∆σi Si

...
...

...
...

...
320 80 1.636237 0.028435 −1.664672
321 79 1.753966 0.022396 −1.776362
322 78 1.365370 0.010992 −1.376362
323 77 1.787613 0.021973 −1.809586
324 76 1.264837 0.013216 −1.278053

325 * 75 0.655003 0.007394 −0.662397
326 74 0.751055 0.014326 −0.765381
327 73 1.012440 0.066446 −1.078886
328 72 0.854451 0.025945 −0.880396
329 71 1.161479 0.015769 −1.177248
330 70 0.872914 0.015037 −0.887951

...
...

...
...

...
* Indicates tpoint1.

Table 2 presents the key intermediate metrics (∆ki, ∆σi, and Si) from the sliding-
window analysis for UGV-3 in Γ2. The critical transition point tpoint1 (original test order
325) is identified where the composite score Si drops sharply to −0.6624, signaling a
simultaneous stabilization in both trend and fluctuation. This objectively marks the shift
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from the volatile Ascent Phase to the stable Convergence Phase, validating the phase-
division algorithm.

Based on the phase division results from the curves, the LIC was further quantified
using Equations (11)–(15). The results are shown in Table 3.

Table 3. Quantitative results of LIC for UGV-3.

Testing
Scenarios tpoint1 IAI ↑ ICV ↓ IMP ↑ IISR ↑ IAUC ↑

Γ1 (R = 0.8 m) 315 0.000119 0.000293 0.225687 0.76 89.908414
Γ2 (R = 1.6 m) 325 0.000127 0.000420 0.233934 0.54 94.364434

Γ1 → Γ2 6.62% 43.58% 3.65% −28.95% 4.96%

↓ is cost-type indicator; ↑ is benefit-type indicator.

When the test scenario changes from Γ1 → Γ2, the spatial constraints become signifi-
cantly tighter. This change is clearly reflected in the metric variations. The 43.58% increase
in ICV indicates reduced convergence stability in the more complex environment. Mean-
while, the 28.95% decrease in IISR confirms the greater challenge in achieving success rate
improvements under tighter spatial constraints. In contrast, the minor improvements in IAI

and IMP suggest the algorithm maintains learning efficiency despite the increased difficulty.
These variations demonstrate our metrics’ sensitivity in capturing different aspects of LIC
under evolving environmental challenges.

5.2. High-Difficulty Test Scenario

In scenario Γ3, the task success rates for both UGV-1 and UGV-2 were 100%, while for
UGV-3 it was 0%, as shown in Figure 8.

Figure 8. Learning curves and phase transition points of each UGV in Γ3.

Because UGV-3 possesses learning capability, testing was continued. It found the
target point at the 631st test and its performance gradually converged by the 846th test, as
shown in Figure 9a. This initial failure phase is primarily due to reward sparsity and policy
initialization. In Γ3, the narrow passage created by the large obstacles made successful
exploration and the consequent positive reward rare. Furthermore, the policy pre-trained
in simpler scenarios was ineffective, requiring extensive re-exploration. This combination
led to the high initial failure rate, which was ultimately overcome, demonstrating UGV-3’s
strong LIC. Further testing reveals the distinct advantages of the proposed method.

It fully uncovers evolutionary learning potential. As shown in Figure 9b, the compre-
hensive performance of UGV-3 gradually improves with the number of tests, eventually
surpassing that of the other vehicles. This contrast highlights a critical limitation of static
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evaluation methods. A static assessment based solely on initial performance would have
prematurely dismissed UGV-3 as ineffective, while our dynamic method correctly identifies
its strong long-term potential by capturing the complete evolutionary trajectory of the
performance sequence Y. This demonstrates how dynamic evaluation provides superior
decision-support for selecting algorithms with learning capability.

Figure 9. Performance evolution and trajectory of UGV-3 in Γ3 with sliding-window standard
deviation bands. (a) Trajectory of UGV-3 from test 1 to 846; (b) Learning curve of UGV-3, showing
gradual performance improvement and eventual convergence.

To clearly compare the characteristics of the different algorithms, Table 4 summarizes
the LIC profiles of each UGV across the three scenarios. It should be noted that the LIC met-
rics in our framework are specifically designed to quantify systems with learning capability.
As non-learning algorithms, UGV-1 and UGV-2 (RRT) do not exhibit systematic improve-
ment trends in their performance sequences. Therefore, the relevant LIC metrics are not
applicable. Consequently, the table only presents the general state of their learning curves.

Table 4. Comparative analysis of learning behavior for all UGVs.

UGV
Version

Testing
Scenario

tpoint1 IAI ↑ ICV ↓ IMP ↑ IISR ↑ IAUC ↑

Γ1
Learning curve is horizontal; no learning state.UGV-1 Γ2

Γ3

Γ1
Learning curve fluctuates slightly; no obvious learning state.UGV-2 Γ2

Γ3

Γ1 315 0.000119 0.000293 0.225687 0.76 89.908414
UGV-3 Γ2 325 0.000127 0.000420 0.233934 0.54 94.364434

Γ3 846 0.000049 0.004399 0.216292 0.61 4.975813

↓ is cost-type indicator; ↑ is benefit-type indicator.

Combining the information in Table 4 with the learning curves (Figures 7–9), we
observe the following: UGV-1 shows a flat performance curve, relying solely on preset
rules with no iterative improvement; UGV-2 exhibits fluctuations stemming from random
sampling, also lacking any systematic learning trend. Neither demonstrates measurable
LIC. Only UGV-3 displays a clear two-phase learning pattern (efficiency gain followed by
stable convergence) in Γ1/Γ2, and although its learning is challenged in Γ3, it eventually
converges. The LIC metrics effectively quantify this dynamic process and the differences
in its scenario adaptability. For UGV-3 in Γ3, only IISR is slightly higher than in Γ2, while
other metrics are significantly lower than in the low-difficulty scenarios. This indicates
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the vehicle’s weaker adaptability in high-difficulty environments. This trend aligns with
that shown in Figure 10, further validating the sensitivity of the LIC metrics to changes in
scenario difficulty.

While UGV-3 converges in Γ3, its slower learning, reduced stability, and lower overall
performance indicate a limited learning capability in high-difficulty settings. This confirms
its shortcomings in robust path planning and obstacle avoidance, aligning with the analysis
in Section 5.1.

Figure 10. Multi-dimensional performance of LIC in the three test scenarios.

5.3. Scenario Suitability Recommendations

Based on the qualitative and quantitative evaluation of the functional characteristics
of the UGVs, and considering the practical requirements of different task scenarios, the
following recommendations are proposed:

UGV-1: Its core capability is limited to executing preset instructions, lacking mech-
anisms for experience accumulation and autonomous iteration. It is suitable for fixed,
enclosed scenarios with singular tasks that do not require performance optimization.
Typical applications include material transfer between fixed production lines in factory
workshops and guided vehicle routing in enclosed ports.

UGV-2: It possesses environmental exploration capability but cannot achieve ex-
perience transfer, and its performance is volatile. It is suitable for low-priority, simple
exploration tasks that tolerate trial and error. Example scenarios include preliminary
terrain surveying in undeveloped mining areas and temporary equipment handling in
large venues.

UGV-3: It possesses experience-driven performance iteration capability. It is suitable
for core scenarios characterized by high dynamics, multiple variables, and a reliance on
adaptive capability. Typical applications include dynamic loading/unloading scheduling
in container ports and real-time security dispatch during large-scale events.

6. Conclusions
This study proposed and validated a dynamic evaluation framework for LIC in UGVs.

The simulation results quantitatively demonstrate its efficacy: for the learning-capable
UGV-3, our metrics captured a 6.62% increase in IAI and a 43.58% increase in ICV when
environmental difficulty escalated from Γ1 to Γ2, while its capability to IISR decreased
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by 28.95%. These data concretely illustrate the framework’s sensitivity in dissecting the
multi-dimensional impact of complexity on learning internalization.

Through theoretical modeling, method design, and simulation validation, the follow-
ing core conclusions are drawn:

(i) This study provides a clear dualistic definition of learnability, dividing it into
LIC and LGC. This addresses a gap in UGV intelligence evaluation by introducing the
learnability dimension, moving beyond the limitations of traditional static evaluations that
focus solely on instantaneous performance statistics.

(ii) A multidimensional scenario parameter system encompassing environment, task
object, and system self-parameters was constructed. The sliding window-based slope-
standard deviation collaborative analysis technique was proposed, enabling the objective
division of learning phases.

(iii) Five evaluation metrics were designed, covering dimensions such as learning
efficiency, stability, and comprehensive effectiveness. Experimental results confirm that
these metrics possess good discriminative power and interpretability.

(iv) This framework offers practical value for research requiring quantitative compari-
son of learning algorithms, as well as for applied scenarios involving UGV selection and
training optimization.

The limitations of this study lie in its focus on the path planning task, without covering
other intelligence modules such as perception and decision-making. Furthermore, the sce-
nario difficulty was primarily varied through obstacle size, which, while effective for initial
validation, represents a single dimension of complexity. Other pertinent dimensions such
as sensor noise, dynamic disturbances, partial observability, and obstacle speed/density
were not included, excluding real-world factors like lighting and dynamic disturbances.
Notably, as the current validation is simulation-based, the transfer of the proposed frame-
work to physical platforms would introduce specific challenges, including sensor noise
and hardware degradation, which could perturb the performance sequence and impair
the accuracy of phase segmentation. Future work will therefore focus on methodological
adaptations, such as incorporating robust filtering techniques during data preprocessing
and adjusting key hyperparameters, to enhance the framework’s applicability and relia-
bility in real-world robotic deployments. Furthermore, expanding the test scenario space
along these additional dimensions will be a critical step in future research to fully assess
the robustness and generalizability of the proposed LIC evaluation method.
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